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Supermanifolds corresponding to the trivial vector bundle
over torus

Mikhail Bashkin

Abstract. All supermanifolds whose retract Tm|n is determined by the trivial bundle
of rank n over the torus Tm are 0-homogeneous and only Tm|n is homogeneous.

1 Preliminaries
1.1 Split and non-split supermanifolds The ground field is C.

A complex supermanifold of dimension m|n is a Z/2-graded ringed space of the form
M := (M,O), whereM is a topological space and O is a sheaf of associative commutative
superalgebras with unit on M , which is locally isomorphic to a superdomain in Cm|n. For
details, see [M], [O3], [BGLS*]. A superdomain in Cm|n is a pair (U,

∧
F(ξ1, . . . , ξn)), where

U is an open subset of Cm, and F is the sheaf of holomorphic functions on Cm. The
coordinates x1, . . . , xm in U ⊂ Cm and generators ξ1, . . . , ξn of the Grassmann algebra are
identified with some sections of the sheaf O|U . They are called local coordinates even and
odd, respectively.

Let (M,F) be a complex manifold and E be a locally free analytic sheaf on it, i.e.,
E is a sheaf of holomorphic sections of some holomorphic vector bundle E → M . Then,
(M,Ogr), where Ogr =

∧
F E , is a complex supermanifold. A supermanifold is called split

if it is isomorphic to a supermanifold of this form and is called non-split otherwise.
Let us show that every supermanifold is a deformation of a split supermanifold. Con-

sider the subsheaf of ideals J = (O1), generated by odd elements. Denote F := O/J .
Then, Mrd = (M,F) is a complex manifold called the odd reduction of (M,O). The
powers of J determine the following filtration:

O = J 0 ⊃ J 1 ⊃ J 2 ⊃ · · · ⊃ J n+1 = 0. (1)

The associated sheaf of graded algebras, grO =
⊕

0≤p≤n grpO, where grpO = J p/J p+1,
is an analytic sheaf on the reduction Mrd. Actually, grO ≃

∧
F E , where E = gr1O
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is locally free sheaf. Clearly, (M, grO) = (M,Ogr) is a split supermanifold of the same
dimension as (M,O).We call it the retract of the supermanifold (M,O). Obviously, a given
supermanifold is split if and only if it is isomorphic to its retract.

Let πp : J p → grpO be the canonical projection. Then, there is the exact sequence of
sheaves

0 −→ J p+1 −→ J p πp−→ grpO −→ 0. (2)

A supermanifold (M,O) is split if and only if there exists an isomorphism of superalgebra
sheaves h : grO → O, whose restriction hp : grpO → J p splits the sequence (2), i.e.,
satisfies the condition πp ◦ hp = id. In general, this splitting exists in a neighborhood of
any point in M . It can be given by means of local coordinates.

1.2 The tangent sheaf For an arbitrary supermanifold (M,O) denote by T := Der O
its tangent sheaf (or the sheaf of vector fields). It is the sheaf of derivations (over C) of the
structure sheafO. Note that the tangent sheaf is a sheaf of Z/2-graded leftO-modules, and
also a sheaf of Lie superalgebras. The sections of the tangent sheaf are called holomorphic
vector fields on (M,O). They form the Lie superalgebra v(M,O) of vector fields on (M,O).

Note that the filtration (1) determines the filtration of the tangent sheaf

T = T(−1) ⊃ T(0) ⊃ · · · ⊃ T(n) ⊃ T(n+1) = 0, (3)

where
T(p) = {v ∈ T | v(O) ⊂ J p, v(J ) ⊂ J p+1}, p ≥ 0.

Since (M,Ogr) is split, its tangent sheaf Tgr is a Z-graded sheaf of Lie superalgebras

Tgr =
⊕

−1≤p≤n

(Tgr)p,

where
(Tgr)p := DerpOgr = {v ∈ Tgr | v((Ogr)q) ⊂ (Ogr)q+p, q ∈ Z}.

This grading is compatible with the Z/2-grading. The Lie superalgebra v(M,Ogr) of vector
fields is a graded algebra with the Z-grading compatible with the Z/2-grading.

Since F ⊂ Ogr, the tangent sheaf Tgr is a Z-graded analytic sheaf on M. This sheaf
is locally free (see [O3]), and hence it is the sheaf of holomorphic sections of a Z-graded
holomorphic vector bundle ST over M (the supertangent bundle).

1.3 Sheaves of automorphisms and the classification theorem Let (M,O) be an
complex supermanifold. Denote by Aut(M,O) the group of automorphisms of (M,O).
By definition, F ∈ Aut(M,O) is a pair (f, φ), where f : M → M belongs to group
BihM of biholomorphic transformations of the manifold M and φ is an automorphism
of the superalgebra sheaf O over f . Denote by AutO the sheaf of automorphisms of the
structure sheaf O (mapping every stalk Ox, where x ∈ M, onto itself). Moreover, for any
F = (f, φ) ∈ Aut(M,O) the map IntF : a 7→ φ ◦ a ◦ φ−1 is an automorphism of the
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group sheaf Aut O. Hence, we get the action Int of the group Aut(M,O) on Aut O by
automorphisms. The subsheaf

Aut(2)O = {a ∈ AutO | a(f)− f ∈ J 2, f ∈ O} (4)

is invariant under this action.
Let E be a holomorphic vector bundle over (M,F) and AutE the group of its auto-

morphisms. Clearly, any element of this group gives rise to an automorphism of the split
supermanifold (M,Ogr) corresponding to E which preserves the Z-grading of the struc-
ture sheaf. Hence, we can identify AutE with a subgroup of Aut(M,Ogr), consisting of
automorphisms that preserve the Z-grading. So the Aut(M,Ogr)-sheaves AutOgr and
Aut(2)Ogr are also AutE-sheaves.

1.1 Theorem ([G]). Any supermanifold (M,O) corresponds to an element of the set of
1-cohomology H1(M,Aut(2)Ogr). This correspondence gives rise to a bijection between the
isomorphism classes of supermanifolds satisfying the above condition, and the orbits of the
group AutE on H1(M,Aut(2)Ogr) under the natural AutE-action.

Let us describe the correspondence mentioned in Theorem 1.1. Let (M,O) be a su-
permanifold with retract (M,Ogr). Then, we can choose an open cover U = (Ui)i∈I of
M such that there exist isomorphisms hi : Ogr|Ui

→ O|Ui
, where i ∈ I, with condi-

tions πp ◦ (hi)p = id on (Ogr)p|Ui
(see (2)). Setting zij = h−1

i hj, we get a 1-cocycle
z = (zij) ∈ Z1(U,Aut(2)Ogr). Its class ζ ∈ H1(M,Aut(2)Ogr) does not depend on the
choice of hi and corresponds to (M,O).

1.4 A non-abelian complex Recall the construction of a non-abelian complex (see
[O3], [O2]) which allows to expressH1(M,Aut(2)Ogr) in terms of differential forms. Let Φp,q

be the sheaf of smooth differential (p, q)-forms on M. First, we construct the Dolbeault–
Serre resolution of the sheaf Ogr :

Φ̂ :=
⊕
p,q≥0

Φ̂p,q, Φ̂p,q := Φ0,q ⊗ (Ogr)p,

∂(φ⊗ u) = (∂φ)⊗ u for any φ ∈ Φ0,q, u ∈ (Ogr)p.

Then, regarding Φ̂ as a sheaf of graded superalgebras with respect to the total degree p+q,
we get a sheaf of graded Lie superalgebras T̂ = Der Φ̂. The sheaf T̂ has the derivation
D = ad∂ of degree 1 (and of bidegree (0, 1)). Denote

S = {u ∈ T̂ | u(f) = u(df) = 0 for any f ∈ F}.

This is a subsheaf of bigraded subalgebras, and D(S) ⊂ S. As it was shown in [O3], the
subsheaf Sp,q is naturally identified with the sheaf Φ0,q⊗(Tgr)p of (0, q)-forms with values in
the vector bundle STp, and D : Sp,q → Sp,q+1 goes over to the operator ∂ : φ⊗v 7→ ∂φ⊗v,
where φ ∈ Φ0,q, and v ∈ (Tgr)p. Hence, the sequence

0 −→ Tgr
i−→ S∗,0

D−→ S∗,1
D−→ . . . , (5)
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where i is a natural inclusion, is identified with the Dolbeault–Serre resolution of Tgr. Set
Sp,q := Γ(M,Sp,q) and S :=

⊕
p,q≥0 Sp,q. Then, the bigraded Lie superalgebras H∗(M, T )

and H(S,D) are isomorphic.
The desired non-abelian complex is the non-linear complex associated to the differential

bigraded Lie superalgebra (S,D). More precisely, denote by F∞ the sheaf of differentiable
complex-valued functions on M. Consider the sheaves O∞

gr := F∞ ⊗Ogr and the group

PAut(2)O∞
gr := {a ∈ AutO∞

gr | a(u)− u ∈
⊕
k≥2

(O∞
gr )k, u ∈ O∞

gr}.

The non-abelian complex is the triple K = (K0, K1, K2), where

K0 := PAut(2)O∞
gr , Kq :=

⊕
k≥1

S2k,q for q = 1, 2,

with the coboundary operators δi : K
i → Ki+1 for i = 0, 1, given by

δ0(a) = ∂ − a∂a−1 for any a ∈ K0,

δ1(u) = Du− 1
2
[u, u] = −1

2
[u− ∂, u− ∂] for any u ∈ K1.

The gauge action ρ of K0 on K1 is given by

ρ(a)(u) = a(u− ∂)a−1 + ∂ for any a ∈ K0, u ∈ K1.

Define Z1(K) := {u ∈ K1 | δ1u = 0} and H1(K) := Z1(K)/ρ. In [O3], it is proved that
there is an isomorphism of pointed sets

µ : H1(K) −→ H1(M,Aut(2)Ogr).

In order to describe this isomorphism, take a cocycle w ∈ Z1(K(1)) and an open cover
U = (Ui) on M such that w = δ0(ai), where ai ∈ Γ(Ui,Aut(2)O∞

gr ). Then, we get the

Čech cocycle z = (zij) ∈ Z1(U,Aut(2)Ogr), where zij = a−1
i aj. We have µ(ω) = ζ, where

ζ ∈ H1(M,Aut(2)Ogr) and ω ∈ H1(K) are the cohomology classes of the cocycles w and
z, respectively.

Note that the group AutE acts on the complex K and on H1(K) in a natural way.
Using eq. (5), we can also construct a fine resolution of the tangent sheaf of any super-

manifold with retract (M,Ogr). Consider the supermanifold (M,O) with retract (M,Ogr)
that corresponds to the cohomology classes ω and ζ of cocycles w ∈ Z1(K) and z = (zij),
as above. Twisting eq. (5) by z, we get the fine resolution

0 −→ T Intz
gr

i−→ SIntz
∗,0

D−→ SIntz
∗,1

D−→ . . . . (6)

Here any v ∈ T Int z
gr is a family v = (vi), where vi ∈ Γ(Ui, Tgr) and vi = zij ◦ vj ◦ z−1

ij in
Ui ∩ Uj. In the same way we express the sections of the sheaves SIntz

∗,q .
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The correspondence (vi) 7→ (hi ◦ vi ◦ h−1
i ) gives an isomorphism T Intz

gr ≃ T , and the

correspondence (vi) 7→ (ai ◦ vi ◦ a−1
i ) gives an isomorphism SIntz

∗,p ≃ S∗,p for p ≥ 0. Then,
eq. (6) gives the following fine resolution of T = DerO:

0 −→ T τ−→ S∗,0
D

w

−→ S∗,1
D

w

−→ . . . , (7)

where D
w
:= D− adw = ad∂−w. Considering global sections, we get a complex (S,D

w
) for

calculating cohomology with values in the sheaf T .
We give an explicit expression of τ . As we have seen in Subsection 1.3, the cocycle

z = (zij) ∈ Z1(U,Aut(2)Ogr) of the cover U can be represented in the form zij = h−1
i hj.

But it can also be represented in the form zij = a−1
i aj. Then, we have h−1

i hj = a−1
i aj in

Ui ∩ Uj, and ϱ = aih
−1
i = ajh

−1
j is an injective homomorphism O → O∞

gr . It follows that
τ : T = DerO → S∗,0 is expressed by the formula v 7→ ϱvϱ−1.

1.2. Theorem. The mapping τ : v 7→ ϱvϱ−1 is an isomorphism of the graded Lie super-
algebra H∗(M, T ) onto H∗(S, Dw

).
In particular, we get the isomorphism τ : v(M,O) → Ker D

w ⊂ S∗,0.

1.5 An application of the Hodge theory Suppose that M is compact. Then, we
can develop the standard Hodge theory in the complex (S,D) regarding it as the complex
of (0, ∗)-forms with values in the bundle ST, see [O3]. Endow M and E with smooth
Hermitian metrics and consider the corresponding Hermitian metric on ST. Denote by D

∗

the operator conjugate to D and by □ := [D,D
∗
] the Beltrami–Laplace operator. Their

bidegrees are (0,−1) and (0, 0), respectively. Then, we have the orthogonal decomposition

S = H⊕DS ⊕D
∗
S, (8)

where H = Ker□ is the bigraded subspace of harmonic elements. Moreover,

id = H +□G = H +D D
∗
G+D

∗
D G,

where H is the projection onto H in eq. (8) and G is the Green operator. It is well known
that

Hp,q ≃ Hp,q(S,D) ≃ Hq(M, (Tgr)p) for any p, q ≥ 0. (9)

Consider now the nonlinear complex K. Denote

H(1) :=
⊕
p≥1

H2p,1,

L1 := KerD
∗ ∩K1, K := Z1(K) ∩ L1,

and define also the subset K0 ⊂ K1 consisting of the u such that

u− 1

2
D

∗
G[u, u] = Hu. (10)
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1.3 Theorem ([O3]). We have K ⊂ K0 ⊂ L1. The mapping H : K0 → H(1) is a bijec-
tion and maps K onto the connected algebraic subset V ⊂ H(1) ≃

⊕
p≥1

H1(M, (Tgr)2p) given

by the equation
H[φ(h), φ(h)] = 0,

where φ : H(1) → L1 is inverse to H.
The natural mapping K → H1(K) ≃ H1(M,Aut(2)Ogr) is onto.

The set K is an analogue of the Kuranishi family of complex structures on a compact
manifold. By Theorem 1.3 we can see that this family cuts every cohomology class, and
hence it can be used for classification of supermanifolds with retract (M,Ogr).

1.6 Actions on supermanifolds Let (M,O) be an arbitrary supermanifold. An ac-
tion of a (real or complex) Lie group G on (M,O) is a homomorphism Ψ : G→ Aut(M,O).
For any g ∈ G we have Ψ(g) = (f(g), ψ(g)), where f : g 7→ f(g) ∈ BihM is an (analytic)
action of the group G on the complex manifold M and ψ(g) is an automorphism of the
sheaf O over f(g).

Let E be a holomorphic vector bundle over a complex manifold M and G a Lie group.
Suppose that E has a structure of the G-bundle, i.e., a homomorphism Φ : G → AutE
satisfying the natural conditions of analiticity is given. Using the inclusion of AutE
into Aut(M,O), we may consider Φ as an action on the split supermanifold (M,Ogr)
corresponding to the bundle E. This action is Z-graded, i.e., all φ(g), where g ∈ G,
preserve the Z-grading of the structure sheaf. Conversely, any Z-graded action of the
group G on (M,Ogr) extends an action on the vector bundle E.

Let again (M,O) be an arbitrary complex supermanifold, (M,Ogr) its retract and E
the corresponding vector bundle.

If F = (f, ψ) ∈ Aut(M,O), then the automorphism ψ of O over f preserves a filtration
(1), and hence determines an automorphism φ of the Z-graded sheaf Ogr over f . Here, φ
is uniquely determined by the relation πp ◦ ψ = φ ◦ πp on J p.

Define F = (f, φ) ∈ Aut(M,Ogr) for every F = (f, ψ) ∈ Aut(M,O). Thus. we get a
homomorphism Aut(M,O) → Aut(M,E). It follows that any action Ψ : G→ Aut(M,O)
induces a Z-graded action Φ : G → Aut(M,Ogr). In this case, we say that the action Φ
lifts to the action Ψ on (M,O).

There is the following lifting criterion:

1.4 Theorem ([O2]). Let G be a compact Lie group and suppose an analytic Z-graded
action Ψ of G on a split supermanifold (M,Ogr) be given. Let (M,O) be the supermanifold
corresponding to a given class ζ ∈ H1(M,Aut(2)Ogr) by Theorem 1.1. Then, the following
conditions are equivalent:

(i) the action Ψ lifts to (M,O);
(ii) the class ζ contains a G-invariant cocycle z ∈ Z1(U,Aut(2)Ogr) where U is an open

G-cover of M ;
(iii) the class µ−1

1 (ζ) ∈ H1(K) (see Theorem 1.1) contains a G-invariant cocycle.
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Now we give definitions of homogeneous and 0-homogeneous supermanifolds. Let
(M,O) be a complex supermanifold. For any x ∈ M we can define the tangent space
Tx(M,O) := (mx/m

2
x)

∗, where mx is the maximal ideal of the local superalgebra Ox.
There is a natural even linear mapping evx : v(M,O) → Tx(M,O). Namely, every

v ∈ v(M,O) determines a linear mapping mx → Ox with v(m2
x) ⊂ mx, and hence a linear

mapping
mx/m

2
x → Ox/mx = C,

i.e., an element evx(v) ∈ (mx/m
2
x)

∗.
The subalgebra g ⊂ v(M,O) is called transitive if evx : g → Tx(M,O) is surjective

for all x ∈ M and if evx : g0 → Tx(M,O)0 = Tx(M) is surjective for all x ∈ M , then it
is called 0-transitive. A supermanifold (M,O) is called homogeneous (0-homogeneous) if
there is a transitive (0-transitive) subalgebra g ⊂ v(M,O) of finite dimension. In the case
when M is a compact we can replace g by v(M,O).

1.5 Theorem ([OP]). If a supermanifold (M,O) is homogeneous (0-homogeneous), then
(M, grO) is homogeneous (0-homogeneous).

2 Supermanifolds associated with the complex torus
2.1 Complex tori Let Γ ⊂ Cm be a discrete subgroup of rank 2m. Then, the manifold
T = Cm/Γ is a complex torus of dimension m. Note that T is a compact complex com-
mutative Lie group. There is a local coordinate system in a neighborhood of any point of
the manifold T formed by the standard coordinates z1, . . . , zm in Cm. Let us denote these
coordinates on T also by z1 . . . , zm. The differential forms dz1, . . . , dzm are defined on T
globally, since they are not changed if we add a complex number to the variable. Using
duality between differential forms and vector fields, we get the vector fields ∂z1 , . . . , ∂zm
which are defined globally, too. The tangent and the cotangent bundles over T are trivial,
and dzi, ∂zi are basis sections of these vector bundles.

2.1 Proposition ([GH]). Let M be a compact Kähler manifold. A form α ∈ Γ(M,Φ0,q)
is harmonic if and only if α is an antiholomorphic form, i.e., ∂α = 0.

It is well known that T = Cm/Γ is a compact Kähler manifold with flat metrics induced
by Hermitian metrics in Cm (see [GH]). We can represent any α ∈ Γ(M,Φ0,q) in a form

α =
∑

1≤i1<...<iq≤m

ai1...iq(z, z)dzi1 . . . dziq , (11)

where ai1...iq(z, z) are smooth global defined functions, z = (z1, . . . , zm), z = (z1, . . . , zm).
Since any antiholomorphic function on T is constant, we have

2.2. Proposition. A form α ∈ Γ(M,Φ0,q) is harmonic if and only if

α =
∑

1≤i1<...<iq≤m

ai1...iqdzi1 . . . dziq , where ai1...iq ∈ C.
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A form on T is called T -invariant if it is invariant under the action of the group T on
itself by translations.

2.3. Proposition. The spaces of harmonic and T -invariant (0, q)-forms on T coincide.

Proof. Clearly, the forms dzi1 . . . dziq are T -invariant. It follows that the form (11) is T -
invariant if and only if ai1...iq ∈ C. Then, we apply Proposition 2.2.

□

2.2 Supermanifolds corresponding to the trivial bundle over the complex
torus Let E = T × Cn be a trivial holomorphic vector bundle of rank n over T and
ξ1, . . . , ξn be the standard basis of Cn. Denote by Tm|n = (T,Ogr) the split supermanifold
corresponding to the bundle E. The structure sheaf Ogr has the form F ⊗

∧
(ξ1, . . . , ξn).

The local coordinates z1, . . . , zm on T are even coordinates on Tm|n, and ξ1, . . . , ξn are odd
ones.

Consider the tangent sheaf Tgr = DerOgr. This sheaf is free over F , or, equivalently,
the bundle ST is trivial, and the basis of its sections is

ξi1 . . . ξik∂zj , ξi1 . . . ξik∂ξl , where
1 ≤ i1 < . . . < ik ≤ n, j = 1, . . . ,m, l = 1, . . . , n.

(12)

Hence, the elements of Sp,q have the form

α =
∑

i1<...<iq

( ∑
j1<...<jp
i=1,...,m

a
i,i1,...,iq
j1,...,jp

(z, z)ξj1 . . . ξjp∂zi +
∑

j1<...<jp+1

j=1,...,n

b
j,i1,...,iq
j1,...,jp+1

(z, z)ξj1 . . . ξjp+1∂ξj

)
dzi1 . . . dziq ,

where a
i,i1,...,iq
j1,...,jp

(z, z) and b
j,i1,...,iq
j1,...,jp+1

(z, z) are smooth globally defined functions on T . Thus,
from Proposition 2.2 we get

2.4. Proposition. The form α ∈ Sp,q is harmonic if and only if

α =
∑

i1<...<iq

( ∑
j1<...<jp
i=1,...,m

a
i,i1,...,iq
j1,...,jp

ξj1 . . . ξjp∂zi +
∑

j1<...<jp+1

j=1,...,n

b
j,i1,...,iq
j1,...,jp+1

ξj1 . . . ξjp+1∂ξj

)
dzi1 . . . dziq ,

(13)

where a
i,i1,...,iq
j1,...,jp

, b
j,i1,...,iq
j1,...,jp+1

∈ C.

2.5. Corollary. If α, β ∈ H, then [α, β] ∈ H.

Assigning to every cohomology class from Hq(M, (Tgr)p) the correspondent harmonic
form from Hp,q (see (9)), we get an isomorphism of graded Lie superalgebras H(M, Tgr)
onto the subalgebra H ⊂ S.

Since ξj1 . . . ξjp∂zi and ξj1 . . . ξjp+1∂ξj are T -invariant, from Proposition 2.3 we get
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2.6. Proposition. Any harmonic form from S is T -invariant, and the other way round.

2.7. Theorem. We have K0 = H(1) and

K = V = {w ∈ H(1) | [w,w] = 0}.

Proof. Take w ∈ K0 and denote h = Hw. We write h =
∑
k≥1

h2k, and w =
∑
k≥1

w2k, where

h2k ∈ H2k,1, w2k ∈ S2k,1. From (10) we get the following equations:

w2 = h2,

w4 − 1
2
D

∗
G[w2, w2] = h4,

. . .

w2k − 1
2
D

∗
G

∑
1≤s≤k−1

[w2s, w2(k−s)] = h2k,

. . .

We prove that w2k = h2k by induction on k. For k = 1 this follows from the first
equation. Suppose that w2i = h2i for 1 ≤ i ≤ k − 1. By Corollary 2.5 we see that

h′ =
∑

1≤s≤k−1

[w2s, w2(k−s)] ∈ H.

Since D
∗
and G commute and D

∗
h′ = 0, we get w2k = h2k.

So we have proved that w = h ∈ H(1). By Theorem 3, K0 = H(1), and φ = id.
Therefore, K = V = {w ∈ H(1) | [w,w = 0}. □

2.3 Lie superalgebras of vector fields on supermanifolds with retract Tm|n

Consider holomorphic vector fields on the split supermanifold Tm|n. It is clear that any
v ∈ vp(T

m|n) is a linear combination of the fields

ξj1 . . . ξjp∂zi for j1 < . . . < jp and i = 1, . . . ,m,
ξj1 . . . ξjp+1∂ξj for j1 < . . . < jp+1 and j = 1, . . . , n (see (12))

with holomorphic coefficients. Since any holomorphic function on T is constant,

v =
∑

1≤i≤m

∑
j1<...<jp

aij1,...,jpξj1 . . . ξjp∂zi +
∑

1≤j≤n

∑
j1<...<jp+1

bjj1,...,jp+1
ξj1 . . . ξjp+1∂ξj , (14)

where aij1,...,jp , b
j
j1,...,jp+1

∈ C. Since

v(Tm|n) = Hp,0 = {v ∈ Sp,0 | Dv = 0},

we see that (14) is a special case of the formula (13).
By Theorem 1.3, any supermanifold with retract Tm|n can be described by a form from

the Kuranishi family K. By Theorem 2.7, K = V consists of harmonic elements.
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2.8. Theorem. Let (T,O) be a supermanifold with retract Tm|n given by an element w in
V. Then, the mapping τ from (1.7) determines an isomorphism

v(T,O) → {v ∈ S∗,0 | Dv = [w, v] = 0} = {v ∈ vp(T
m|n) | [w, v] = 0}.

Proof. We can write w = w2 + w4 + . . . , where w2k ∈ H2k,1. Let v ∈ S∗,0 and Dv = [w, v].
Then, v = v−1 + v0 + v1 + . . . , where vi ∈ Si,0. The equation Dv = [w, v] gives the finite
system of equations:

Dv−1 = 0,
Dv0 = 0,
Dv1 = [w2, v−1],
Dv2 = [w2, v0],
Dv3 = [w2, v1] + [w4, v−1],
Dv4 = [w2, v2] + [w4, v0],
. . .

(15)

Let us prove that Dvk = 0 for k = −1, 0, . . . , by induction on k. For k = −1, 0 this
follows from the first and the second equations of (15). If Dv−1 = . . . = Dvk−1 = 0, then,
using system (15), we see that Dvk is a sum of commutators of the fields v−1, . . . , vk−2 with
the forms w2l. Since w2l ∈ H2l,1, Corollary 2.5 shows that Dvk ∈ Hp,1. Hence Dvk = 0.

Thus, we proved that the kernel of Dw = D−adw in S∗,0 coincides with the subalgebra
{v ∈ vp(T

m|n) | [w, v] = 0} ⊂ vp(T
m|n). Now our statement follows from Theorem 1.2. □

2.4 Homogeneous supermanifolds with retract Tm|n

2.9. Theorem. Any supermanifold (T,O) with retract Tm|n is 0-homogeneous. It is ho-
mogeneous if and only if (T,O) ≃ Tm|n.

Proof. Let (T,O) be an arbitrary supermanifold with retract Tm|n. From Theorem 2.7 we
see that it is determined by a harmonic form w ∈ V. By Proposition 2.6 w is invariant
under the natural action of the group T. Hence, by Theorem 1.4 the action of the group
T on Tm|n lifts to an action on (T,O). So (T,O) is 0-homogeneous.

From eq. (12) we see that the Lie superalgebra v(Tm|n) is transitive. Then, Tm|n is
homogeneous. Let (T,O) be the supermanifold with retract Tm|n determined by a co-
cycle w ∈ V ⊂ H(1). Let (T,O) be homogeneous. Take a point x0 ∈ T, and de-
note by ξ1, . . . , ξn the odd local coordinates in the neighborhood U of x0 which corre-
spond to the coordinates ξ1, . . . , ξn on Tm|n by the local spliting hU : Ogr|U → O|U . Since
evx0 : v(T,O)1 → Tx0(T,O)1 is surjective, then for any j such that 1 ≤ j ≤ n, there
exists a field vj ∈ v(T,O)1 such that vj = ∂ξj + v′j in U , where (v′j)x0 ∈ mx0Tx0 . We can
assume that the neighborhood U = Ui is included into the cover (Ui) which we used in the
description of τ in Subsection 1.4. As was shown in Subsection 1.4, we have

τ(vj) = ai(h
−1
i ∂ξjhi)a

−1
i + (aih

−1
i )v′j(hia

−1
i ).
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The sheaf S∗,0 = T ∞
gr = DerO∞

gr has a filtration similar to (3):

T ∞
gr = T ∞

gr(−1) ⊂ T ∞
gr(0) ⊂ T ∞

gr(1) ⊂ . . .

Since ai ∈ Γ(Ui,Aut(2)O∞
gr ), we have

ai(h
−1
i ∂ξjhi)a

−1
i = ai∂ξja

−1
i = ∂ξj + uj,

where uj ∈ Γ(Ui, T ∞
gr(1)). Clearly,

(aih
−1
i )v′j(hia

−1
i ) = v′′j

satisfies (v′′j )x0 ∈ m∞
x (T ∞

gr )x0 , where m
∞
x0

is the maximal ideal of (O∞
gr )x0 . Hence in Ui we

have
τ(vj) = ∂ξj + uj + v′′j ,

where (uj + v′′j )x0 ∈ m∞
x0
(T ∞

gr )x0 . By Theorem 2.8 τ(vj) ∈ v(Tm|n)1.

So, if ṽj = τ(vj)− ∂ξj ∈ v(Tm|n)1, then ṽx0 ∈ mx0(Tgr)x0 , and therefore,

ṽj ∈
⊕
k≥0

v(Tm|n)2k+1.

By Theorem 2.8
[w, ∂ξj + ṽj] = 0 for j = 1, . . . , n. (16)

We write w as w = w2 + w4 + . . . , where w2k ∈ H2k,1, and prove that w2k = 0 for
k = 1, 2, . . . , by induction on k.

Considering the component of degree 1 of the left part of formula (16), we see that
[w2, ∂ξj ] = 0. Hence,

[w2, ∂ξj ](zr) = ∂ξj(w2(zr)) = 0 for r = 1, . . . ,m,
[w2, ∂ξj ](ξs) = ∂ξj(w2(ξs)) = 0 for s = 1, . . . , n.

From (13) we see that w2 = 0.
Suppose we have proved that w2 = w4 = . . . = w2k−2 = 0. Considering the component

of degree 2k−1 of the left part of the formula (16), we get [w2k, ∂ξj ] = 0 for all j = 1, . . . , n.
As above, we can prove that w2k = 0.

Thus, w = 0. Hence, (T,O) ≃ Tm|n. □
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