Chebyshev-quasilinearization method for solving fractional singular nonlinear Lane-Emden equations

Amir Mohammadi, Ghader Ahmadnezhad, Nasser Aghazadeh

Abstract. In this paper, we propose a method for solving some classes of the singular fractional nonlinear Lane-Emden type equations. The method is proposed by utilizing the second-kind Chebyshev wavelets in conjunction with the quasilinearization technique. The operational matrices for the second-kind Chebyshev wavelets are used. The method is tested on the fractional standard Lane-Emden equation, the fractional isothermal gas spheres equation, and some other examples. We compare the results produced by the present method with some well-known results to show the accuracy and efficiency of the method.

1 Introduction

Fractional ordinary and partial differential equations have found many applications in many physical, chemical, and engineering problems. These equations provide a better description than the integer order of derivatives due to having a fractional derivative for describing fluid mechanics and viscoelastic theory. The most important advantage of fractional derivatives in describing physical phenomena is the more precise modeling that is ignored for the integer order derivatives of these cases. Modeling and mathematical simulation of physical phenomena and processes, based on their characteristics, leads to the

MSC 2020: 34A08, 33F05, 65L60
Keywords: Fractional differential equation, Singular Lane-Emden equation, Numerical solution, Second-kind Chebyshev wavelets, Quasilinearization.

Affiliation:
Amir Mohammadi – Department of applied mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
E-mail: amirmohammadi1945@yahoo.com
Ghader Ahmadnezhad – Department of applied mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
E-mail: hazharahmadnezhad@gmail.com
Nasser Aghazadeh – Department of applied mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
E-mail: aghazadeh@azaruniv.ac.ir
creation of fractional differential equations and the necessity of solving such equations, but the important point is that most of the fractional equations do not always have well-known exact solutions. There are a variety of numerical methods that provide approximate solutions for these equations, such as the Adomian Decomposition Method (ADM) [5], [42], [57], the Homotopy Perturbation Method (HPM) [27], [33], the Variational Iteration Method (VIM) [12], [32], the generalized Differential Transform Method (DTM) [11], [35], and collocation methods [2], [43]. In the meantime, spectral methods have been widely used for numerical solutions of fractional differential equations due to excellent error properties. The collocation method, the Galerkin, and Tau methods are three commonly used methods in the spectral scheme. Collocation methods have successfully been used to simulate numerically many problems in science and engineering, see [44], [48], [64]. In recent years, especially in the last two decades, the application of wavelets has greatly expanded in solving the fractional differential equations [52], [57], [63], [64]. Recently, the operational matrices of Chebyshev, Legendre, and Haar wavelets have been used in numerically solving many of the fractional differential equations [12], [38], [48], [52], [54], [61], [63].

Many problems arising in the field of mathematical physics and astrophysics can be modeled by the Lane-Emden type initial value problems. In this work, we consider following form of the fractional singular nonlinear Lane-Emden equations:

$$D_x^\alpha u(x) + \frac{2}{x} D_x^\beta u(x) + f(x, u(x)) = 0, \quad x > 0, \quad 1 < \alpha \leq 2, \quad 0 < \beta \leq 1,$$ \hspace{1cm} (1)

with initial conditions:

$$u(0) = A, \quad u'(0) = B,$$ \hspace{1cm} (2)

where A and B are constants, $f(x, u)$ is the nonlinear function of u, x and u are the independent and dependent variables respectively. For $\alpha = 2$ and $\beta = 1$, we have classical Lane-Emden type equations which are nonlinear ordinary differential equations which are categorized as singular initial value problems. The Lane-Emden equation was first studied by astrophysicists Jonathan Homer Lane and Robert Emden, where they considered the thermal behavior of a spherical cloud of gas acting under the mutual attraction of its molecules and subject to the classical laws of thermodynamics [7], [26], [58], [60]. Due to the presence of a singularity in $x = 0$, solving such equations is associated with difficulties. It should be mentioned that for non-fractional equation there is a proof that one can obtain analytic solution around fixed-singularity $x = 0$ [25]. There are methods for solving equation (1) with (2), such as the collocation methods [39], [40], tangent chord method [9], finite difference methods [4], [17], spline finite difference methods [16], B-Spline method [18], spline method [24], Chebyshev economization method [21], Cubic spline method [20], [22], Adomian decomposition method [10], [14], Adomian decomposition method with Green’s function [49], [50], variational iteration method [59], [60], the optimal variational iteration method [47], homotopy analysis method [6] and the references cited therein.

Wavelets, as a well-known base set, are used to solve fractional differential equations; the use of wavelets, especially orthogonal wavelets, has been widely used to solve differential
equations in the last two decades [29], [53]. The second-kind Chebyshev wavelets have been very much considered due to their useful properties and their ability to solve different types of fractional differential equations [64]. Babolian and Fattahzadeh use the Chebyshev wavelet operational matrix for numerical solution of differential equations [1], Dehghan use the Chebyshev finite difference methods for Fredholm integro-differential equation [8], Zhu and Fan solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet [62] and Iqbal and et all use the Chebyshev wavelets method for solving fractional differential equations [15].

The aim of this work is applying the second-kind Chebyshev wavelet collocation method combined with the quasilinearization technique for solving fractional differential equations with a singularity at the point $x = 0$. The quasilinearization technique was introduced by Bellman and Kalaba [19]. This technique indeed is a generalization of the Newton-Raphson method to solve nonlinear ordinary and partial differential equations. In this work, we convert the nonlinear singular Lane-Emden equation to a linear equation, then we solve this linear equation by the second-kind Chebyshev wavelet collocation method. Operational matrices of fractional integration are utilized to obtain approximate solutions. We compare our approximate solutions with other results introduced in [13], [23], [31], [34], [41], [45], [48], [54], [61].

2 Preliminaries and some notations

2.1 Fractional integral and derivative

In this section, we present some definitions, notations and preliminaries of the fractional calculus theory which will be used in this work [37].

Definition 2.1. The Riemann-Liouville fractional integral operator of order $\alpha \geq 0$ of a function is defined as:

$$J^\alpha u(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t - \tau)^{\alpha-1} u(\tau) d\tau, \quad \alpha, t > 0,$$

$$J^0 u(t) = u(t).$$

The properties of the operator J^α are given as follows:

(i) $J^\alpha J^\beta u(t) = J^{\alpha+\beta} u(t),$

(ii) $J^\beta J^\alpha u(t) = J^\alpha J^\beta u(t),$

(iii) $J^\alpha t^\gamma = \frac{\Gamma(\gamma+1)}{\Gamma(\alpha+\gamma+1)} t^{\alpha+\gamma}.$

Definition 2.2. The fractional derivative of $u(t)$ in the Caputo sense is defined as:

$$D^\alpha u(t) = \begin{cases} \frac{d^\alpha u(t)}{dt^\alpha} & \alpha = r \in \mathbb{N}; \\ \frac{\Gamma(r)}{\Gamma(\alpha)} \int_0^t \frac{u(\tau)}{(t-\tau)^{r-\alpha}} d\tau, & 0 \leq r - 1 < \alpha < r, \end{cases}$$
It be noticed that \(u^{(r)} \) is the integer order differentiation of \(u(t) \).

For instance, \(u(t) = t^3 \) we want to calculate of \(D^{1.5}u(t) \), so \(1 < \alpha < 2 \) then \(r = 2 \),

\[
D^{1.5}t^3 = \frac{1}{\Gamma(2 - 1.5)} \int_0^t \frac{6t}{(t - \tau)^{0.5}} d\tau = \frac{12t^{\frac{3}{2}}}{\sqrt{\pi}}
\]

2.2 The second-kind of Chebyshev wavelets

The second-kind of Chebyshev wavelets \(\psi_{n,m}(t) = \psi(k, n, m, t) \) have four arguments \(k, m, n, t \), where \(k \) can assume any positive integer, \(n = 1, 2, \ldots, 2^k - 1 \), \(m \) is the degree of the second-kind Chebyshev polynomials and \(t \) is the time. They are defined on the interval \([0, 1)\) as:

\[
\psi_{n,m}(t) = \begin{cases}
2^{\frac{k}{2}} \sqrt{\frac{2}{\pi}} U_m(2^k t - 2n + 1) & \frac{n - 1}{2^k - 1} \leq t \leq \frac{n}{2^k - 1} \\
0 & \text{otherwise},
\end{cases}
\]

where \(U_m(t) \)'s are the second-kind Chebyshev polynomials of degree \(m \) which are orthogonal with respect to the weight function \(w(t) = \sqrt{1 - t^2} \) on the interval \([-1, 1]\) and satisfy the following recursive formula:

\[
U_0(t) = 1, \quad U_1(t) = 2t, \\
U_{m+1}(t) = 2tU_m(t) - U_{m-1}(t), \quad m = 1, 2, 3, \ldots
\]

The weight function \(\tilde{w}(t) = w(2t - 1) \) has to be dilated and translated as

\[
w_n(t) = w(2^k t - 2n + 1).
\]

A function \(f(x) \in L_2(R) \) defined over \([0, 1)\) can be expanded by the second-kind Chebyshev wavelets as:

\[
f(x) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{n,m} \psi_{n,m}(x),
\]

where

\[
c_{n,m} = \langle f(x), \psi_{n,m}(x) \rangle.
\]

If the infinite series in Eq (4) is truncated, then it can be written as:

\[
f(x) \cong \sum_{n=1}^{M-1} \sum_{m=0}^{2^k - 1} c_{n,m} \psi_{n,m}(x) = C^T \Psi(x),
\]

which the coefficient vector \(C \) and the second-kind Chebyshev wavelet function vector \(\Psi(x) \) are \(m' = 2^k - 1 \) column vectors. For simplicity, Eq (5) can be written as:

\[
f(x) \cong \sum_{i=1}^{m'} c_i \psi_i = C^T \Psi(x), \quad \text{where } c_i = c_{n,m} \text{ and } \psi_i(t) = \psi_{n,m}(t).
\]
The index \(i \) can be determined by the relation \(i = M(n - 1) + m + 1 \); thus, we have:

\[
C = [c_1, c_2, c_3, \ldots, c_m]^T \quad \text{and} \quad \Psi(t) = [\psi_1, \psi_2, \psi_3, \ldots, \psi_m]^T.
\]

By taking the collocation points as following \(x_i = \frac{2i-1}{2M}, i = 1, 2, 3, \ldots, 2^k-1M \), we define the second-kind Chebyshev wavelets matrix \(\Phi(x)^{m' \times m'} \) as:

\[
\Phi_{m' \times m'} = \begin{bmatrix}
\Psi(\frac{1}{2m'}), \Psi(\frac{3}{2m'}), \ldots, \Psi(\frac{2m' - 1}{2m'})
\end{bmatrix},
\]

where \(m' = 2^{k-1}M \). For example, when \(M = 4 \) and \(k = 2 \), the second-kind Chebyshev wavelets matrix is expressed as:

\[
\Phi_{8 \times 8} = \begin{pmatrix}
1.5958 & 1.5958 & 1.5958 & 1.5958 & 0 & 0 & 0 & 0 \\
-2.3937 & -2.3937 & -2.3937 & -2.3937 & 0 & 0 & 0 & 0 \\
1.9947 & 1.9947 & 1.9947 & 1.9947 & 0 & 0 & 0 & 0 \\
-0.5984 & -0.5984 & -0.5984 & -0.5984 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1.5958 & 1.5958 & 1.5958 & 1.5958 \\
0 & 0 & 0 & 0 & -2.3937 & -2.3937 & -2.3937 & -2.3937 \\
0 & 0 & 0 & 0 & 1.9947 & 1.9947 & 1.9947 & 1.9947 \\
0 & 0 & 0 & 0 & -0.5984 & -0.5984 & -0.5984 & -0.5984
\end{pmatrix}.
\]

2.3 The fractional integral of the second-kind Chebyshev wavelets

In this section, a fractional integral formula of the Chebyshev wavelets in the Riemann-Liouville sense is derived by means of the shifted second-kind Chebyshev polynomials \(U_m^x \), which plays an important role in dealing with the time fractional equations.

Theorem 2.3. The fractional integral of a Chebyshev wavelet defined on the interval \([0, 1]\) with compact support \([\frac{n-1}{2^n}, \frac{n}{2^n}]\) is given by:

\[
I^x_\alpha \psi_{n,m}(x) = \begin{cases}
0, & x < \frac{2n-2}{2^n} \\
2^{\frac{3}{2}} \sqrt{2/\pi} \left[\sum_{i=0}^{m} \sum_{r=0}^{i} \sum_{j=0}^{r} 2^{i(i+m+1)!}(r-j)!2^k(r-j)! (2i+1)!i!(m-i)!((i-r)!(i-j+r+1)! \right. \\
\times \left(x - \frac{2n-2}{2^n} \right)^{\alpha-j+r}, & \frac{2n-2}{2^n} \leq x \leq \frac{2n}{2^n} \\
2^{\frac{3}{2}} \sqrt{2/\pi} \left[\sum_{i=0}^{m} \sum_{r=0}^{i} \sum_{j=0}^{r} 2^{i(i+m+1)!}(r-j)!2^k(r-j)! (2i+1)!i!(m-i)!((i-r)!(i-j+r+1)! \right. \\
\times \left. \left((-1)^j (x - \frac{2n-2}{2^n})^{\alpha-j+r} - (x - \frac{2n}{2^n})^{\alpha-j+r} \right) \right], & x > \frac{2n}{2^n}
\end{cases}
\]

Proof. The general form of the second kind Chebyshev polynomials is:

\[
U_m(x) = \sum_{i=0}^{m} \sum_{r=0}^{i} \frac{(-1)^{i+r}2^i(m+i+1)!}{r!(i-r)!(m-i)!(2i+1)!} x^r.
\]
We now derive the operator I^α for $\Psi(t)$

$$I^\alpha \Psi(x) = P^\alpha_x.$$

To obtain $I^\alpha \psi_{n,m}(t)$, we use the Laplace transform. We get the following relation for the second kind Chebyshev wavelets

$$\psi_{n,m}(x) = 2^k \sqrt{\frac{2}{\pi}} \left(\nu_{\frac{2n}{2k}}(x) U_m(2^k x - (2n - 1)) - \nu_{\frac{2n}{2k}}(x) U_m(2^k x - (2n - 1)) \right), \quad (9)$$

where $\nu_c(x)$ is the unit step function defined as

$$\nu_c(x) = \begin{cases}
1, & x \geq c, \\
0, & x < c.
\end{cases}$$

By taking the Laplace transform from Eq (9), we get

$$\mathcal{L}\{\psi_{n,m}(x)\} = 2^k \sqrt{\frac{2}{\pi}} e^{-2n^{-2}s} \left\{ \nu_{\frac{2n}{2k}}(t) U_m(2^k x - \frac{2n - 2}{2k}) + 1 \right\}$$

$$\quad - 2^k \sqrt{\frac{2}{\pi}} e^{-2n^{-2}s} \mathcal{L}\{U_m(2^k x - 1)\}$$

$$\quad - 2^k \sqrt{\frac{2}{\pi}} e^{-2n^{-2}s} \mathcal{L}\{U_m(2^k x + 1)\}. \quad (10)$$

From the definition of $U_m(x)$ in Eq (8), we have

$$\mathcal{L}\{\psi_{n,m}(x)\} = 2^k \sqrt{\frac{2}{\pi}} e^{-2n^{-2}s} \left\{ \sum_{i=0}^{m} \sum_{r=0}^{i} \frac{(-1)^i r^i (m+i+1)!}{r!(i-r)!(m-i)!(2i+1)!} (2^k x - 1)^r \right\}$$

$$\quad - 2^k \sqrt{\frac{2}{\pi}} e^{-2n^{-2}s} \left\{ \sum_{i=0}^{m} \sum_{r=0}^{i} \frac{(-1)^i r^i (m+i+1)!}{r!(i-r)!(m-i)!(2i+1)!} (2^k x + 1)^r \right\}.$$
For simplicity, let $T^{i,m,r} = \frac{(-1)^i r^i (m+i+1)!}{r! (i-r)! (m-i)! (2i+1)!}$, and we get

$$L\{\psi_{n,m}(x)\} = 2^k \sqrt{\frac{2}{\pi}} e^{-\frac{2n-2s}{2^k s}} L\left\{ \sum_{i=0}^{m} \sum_{r=0}^{i} T^{i,m,r} (2^k x - 1)^r \right\}$$

$$- 2^k \sqrt{\frac{2}{\pi}} e^{-\frac{2n-2s}{2^k s}} L\left\{ \sum_{i=0}^{m} \sum_{r=0}^{i} T^{i,m,r} (2^k x + 1)^r \right\}$$

$$= 2^k \sqrt{\frac{2}{\pi}} e^{-\frac{2n-2s}{2^k s}} L\left\{ \sum_{i=0}^{m} \sum_{r=0}^{i} \sum_{j=0}^{r} T^{i,m,r} \frac{r!}{j!(r-j)!} (-1)^j 2^{k(r-j)} x^{r-j} \right\}$$

$$- 2^k \sqrt{\frac{2}{\pi}} e^{-\frac{2n-2s}{2^k s}} L\left\{ \sum_{i=0}^{m} \sum_{r=0}^{i} \sum_{j=0}^{r} T^{i,m,r} \frac{r!}{j!(r-j)!} 2^{k(r-j)} x^{r-j} \right\}$$

$$= 2^k \sqrt{\frac{2}{\pi}} e^{-\frac{2n-2s}{2^k s}} \left\{ \sum_{i=0}^{m} \sum_{r=0}^{i} \sum_{j=0}^{r} \frac{r!}{j!} T^{i,m,r} 2^{k(r-j)} \left(e^{\frac{2n}{2^k}} (-1)^j - 1 \right) \frac{1}{s^{r-j+1}} \right\}. \quad (11)$$

By using the Riemann-Liouville fractional integral operator of order α:

$$I^\alpha f(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha-1} * f(x),$$

where $x^{\alpha-1} * f(x)$ is convolution product of $x^{\alpha-1}$ and $f(x)$, we get

$$L\{I^\alpha \psi_{n,m}(x)\} = L\{ \frac{x^{\alpha-1}}{\Gamma(\alpha)} \} L\{\psi_{n,m}(x)\}$$

$$= 2^k \sqrt{\frac{2}{\pi}} e^{-\frac{2n-2s}{2^k s}} \left\{ \sum_{i=0}^{m} \sum_{r=0}^{i} \sum_{j=0}^{r} \frac{r!}{j!} T^{i,m,r} 2^{k(r-j)} \left(e^{\frac{2n}{2^k}} (-1)^j - 1 \right) \frac{1}{s^{r-j+1+\alpha}} \right\}. \quad (11)$$

Taking the inverse Laplace transform of Eq (11) yields

$$I^\alpha \psi_{n,m}(x) = 2^k \sqrt{\frac{2}{\pi}} \left\{ \sum_{i=0}^{m} \sum_{r=0}^{i} \sum_{j=0}^{r} T^{i,m,r} \frac{r!}{j!} 2^{k(r-j)} L^{-1}\left\{ e^{-\frac{2n-2s}{2^k s}} s^{r-j+1+\alpha} (-1)^j \right\} \right\}$$

$$- \frac{e^{-\frac{2n-2s}{2^k s}}}{s^{r-j+1+\alpha}}$$

$$= 2^k \sqrt{\frac{2}{\pi}} \left\{ \sum_{i=0}^{m} \sum_{r=0}^{i} \sum_{j=0}^{r} T^{i,m,r} \frac{r!}{j!} 2^{k(r-j)} \left(\frac{\nu_{2n-2}(x - \frac{2n-2}{2^k})^{r-j+\alpha}}{\Gamma(r-j+1+\alpha)} \right) \right\}$$

$$- \frac{\nu_{2n-2}(x - \frac{2n-2}{2^k})^{r-j+\alpha}}{\Gamma(r-j+1+\alpha)}.$$
By using Eq (12), we have

\[
I_\alpha^{\psi_{n,m}}(x) = \begin{cases}
0, & x < \frac{2n-2}{2k} \\
2^k \sqrt{\frac{2}{\pi}} \left[\sum_{i=0}^{m} \sum_{r=0}^{i} \sum_{j=0}^{r} \frac{2^i (i+m+1)! (-1)^{i+j+r} 2^k (r-j)}{(2i+1)! (i-r)! (m-i)! (i-r)! \Gamma(\alpha-j+r+1)} \right] \times \left(x - \frac{2n-2}{2k} \right)^{\alpha-j+r}, & 2^k \frac{2n-2}{2k} \leq x \leq \frac{2n}{2k} \\
\frac{2^k}{\sqrt{\pi}} \left[\sum_{i=0}^{m} \sum_{r=0}^{i} \sum_{j=0}^{r} \frac{2^i (-1)^{i+r} (i+m+1)! 2^k (r-j)}{(2i+1)! (i-r)! (m-i)! (i-r)! \Gamma(\alpha-j+r+1)} \right] \times \left(-1 \right)^j \left(x - \frac{2n-2}{2k} \right)^{\alpha-j+r} - \left(x - \frac{2n}{2k} \right)^{\alpha-j+r}, & x > \frac{2n}{2k}.
\end{cases}
\]

(13)

The proof is completed.

For instance, for \(k = 2, M = 4, x = 0.6, \alpha = 0.9 \), we obtain

\[
I^{0.9\psi_{8\times1}}(0.6) = \begin{pmatrix} 0.838817891721642 \\
0.045706956934399 \\
0.290734994150959 \\
0.021626272477045 \\
0.208881853762857 \\
-0.329813453309774 \\
0.323368822612918 \\
-0.217309447751042 \end{pmatrix},
\]

where \(\Psi_{8\times1} = (\psi_{1,0}(x), \psi_{1,1}(x), \psi_{1,2}(x), \psi_{1,3}(x), \psi_{2,0}(x), \psi_{2,1}(x), \psi_{2,2}(x), \psi_{2,3}(x))^T \).

We can obtain the fractional order integration matrix \(P_{m'\times m'}^\alpha = I^{\alpha \psi_{n,m}}(x) \) by substituting the collocation points in Eq (13) as

\[
P_{2^k-1,M\times 2^k-1,M}^\alpha = \begin{pmatrix} I^{\alpha \psi_{1,0}}(x(1)) & I^{\alpha \psi_{1,0}}(x(2)) & \ldots & I^{\alpha \psi_{1,0}}(x(2^{k-1}M)) \\
I^{\alpha \psi_{1,1}}(x(1)) & I^{\alpha \psi_{1,1}}(x(2)) & \ldots & I^{\alpha \psi_{1,1}}(x(2^{k-1}M)) \\
\vdots & \vdots & \ddots & \vdots \\
I^{\alpha \psi_{2^{k-1},M}}(x(1)) & I^{\alpha \psi_{2^{k-1},M}}(x(2)) & \ldots & I^{\alpha \psi_{2^{k-1},M}}(x(2^{k-1}M)) \end{pmatrix}.
\]
Chebyshev-quasilinearization method

For instance, we fix $k = 2, M = 4$ and $\alpha = 0.9$, then we have:

\[
P_{8\times8}^{0.9} = \begin{pmatrix}
0.1368 & 0.3678 & 0.5825 & 0.7885 & 0.8517 & 0.8165 & 0.7939 & 0.7771 \\
-0.2377 & -0.4452 & -0.3985 & -0.1245 & 0.0545 & 0.0337 & 0.0246 & 0.0194 \\
0.2789 & 0.2423 & 0.0032 & 0.0615 & 0.2996 & 0.2783 & 0.2680 & 0.2612 \\
-0.2570 & -0.0232 & -0.0530 & -0.2259 & 0.0274 & 0.0148 & 0.0104 & 0.0081 \\
0 & 0 & 0 & 0 & 0 & 0.1368 & 0.3678 & 0.5825 & 0.7885 \\
0 & 0 & 0 & 0 & 0 & -0.2377 & -0.4452 & -0.3985 & -0.1245 \\
0 & 0 & 0 & 0 & 0 & 0.2789 & 0.2423 & 0.0032 & 0.0615 \\
0 & 0 & 0 & 0 & 0 & -0.2570 & -0.0232 & -0.0530 & -0.2259
\end{pmatrix}.
\]

3 Procedure of implementation

In this section, we describe our method to solve the singular and nonlinear fractional Lane-Emden equations. We first convert nonlinear equations to linear equations by the quasilinearization technique, then using the second-kind Chebyshev wavelets collocation method to solve the equations obtained in the previous step. We describe the procedure of implementation in more details, which enable the readers to understand the method more effectively.

Consider the following form of Lane-Emden equation:

\[
D_x^\alpha u(x) + \frac{2}{x} D_x^\beta u(x) + f(x, u(x)) = 0, \quad x > 0, \quad 1 < \alpha \leq 2, \quad 0 < \beta \leq 1,
\]

with initial conditions:

\[
u(0) = A, \quad u'(0) = B,
\]

for applying the quasilinearization technique [3], [30], let an initial approximation of the function $u(x)$, for this we use $u_0(x)$ as initial approximation, it may be $u_0(x) = A$. The function f can now be expanded around the function $u_0(x)$ by using of the Taylor series expansion:

\[
f(x, u(x)) = f(x, u_0(x)) + (u(x) - u_0(x))(f_{u_0}(x, u_0(x))),
\]

in series expansion we ignore the second and other higher terms. Using Eq (16) in Eq (14):

\[
D_x^\alpha u(x) + \frac{2}{x} D_x^\beta u(x) + f(x, u_0(x)) + (u(x) - u_0(x))(f_{u_0}(x, u_0(x))) = 0,
\]

solving Eq (17) for $u(x)$, we obtain it and call $u_1(x)$. By continuing this process, we can get $u_2(x)$. Then, recurrence relation is:

\[
D_x^\alpha u_{r+1}(x) + \frac{2}{x} D_x^\beta u_{r+1}(x) + f(x, u_r(x)) + (u_{r+1}(x) - u_r(x))(f_{u_r}(x, u_r(x))) = 0,
\]

(18)
where \(u_r(x) \) is known and we can obtain \(u_{r+1}(x) \). Eq (18) is a linear equation with the following conditions:

\[
\begin{align*}
 u_{r+1}(0) &= A, & u'_{r+1}(0) &= B. \\
\end{align*}
\]

(19)

Applying the Chebyshev wavelet method in Eq (18), we approximate the higher order derivative term by Chebyshev wavelet series as:

\[
D^\alpha_x u_{r+1}(x) \approx \sum_{n=1}^{2k-1} \sum_{m=0}^{M-1} c^{r+1}_{n,m} \psi_{n,m}(x).
\]

(20)

Lower order derivatives are obtained by integrating (20) and use of initial conditions (19), we get:

\[
\begin{align*}
 u_{r+1}(x) &\approx u'_{r+1}(x) = \sum_{n=1}^{2k-1} \sum_{m=0}^{M-1} c^{r+1}_{n,m} P^\alpha_x \psi_{n,m}(x) + Bx + A, \\
 D^\beta_x u_{r+1}(x) &\approx D^\beta_x u'_{r+1}(x) = \sum_{n=1}^{2k-1} \sum_{m=0}^{M-1} c^{r+1}_{n,m} P^{\alpha-\beta}_x \psi_{n,m}(x) + B \frac{x^{1-\beta}}{\Gamma(2-\beta)}. \\
\end{align*}
\]

(21)

Using Eqs ((21),(22),(20)) in Eq (18), we obtain:

\[
\begin{align*}
 \sum_{n=1}^{2k-1} \sum_{m=0}^{M-1} c^{r+1}_{n,m} \psi_{n,m}(x) + 2 \left(\sum_{n=1}^{2k-1} \sum_{m=0}^{M-1} c^{r+1}_{n,m} P^\alpha_x \psi_{n,m}(x) + B \frac{x^{1-\beta}}{\Gamma(2-\beta)} \right) \\
 + f(x, u_r(x)) + \left(\sum_{n=1}^{2k-1} \sum_{m=0}^{M-1} c^{r+1}_{n,m} P^{\alpha-\beta}_x \psi_{n,m}(x) \right. \\
 \left. + Bx + A - u_r(x) \right) (f_{u_r}(x, u_r(x))) \approx 0. \\
\end{align*}
\]

(23)

By using collocation points \(x_i = \frac{i-0.5}{2k-1} \), replacing \(\approx \) by =, and solving this linear system for \(c^{r+1} \), which is a coefficients vector, and substituting \(c^{r+1} \) in Eq (21), we get solution \(u_{r+1}(x) \) at the collocation points. Suppose \(u_0(x) = A \) as an initial approximation, we get a linear fractional differential equation in \(u_1(x) \) by substituting \(r = 0 \) in Eq (18), where is solved by above procedure. Similarly for \(r = 1 \) we obtain \(u_2(x) \) and so on.

4 Convergence of Chebyshev Wavelet Quasilinearization Method

We derive an error estimate of the Chebyshev wavelet quasilinearization approximations to an arbitrary unknown function.

Theorem 4.1. Let \(r, k, M \to \infty \), then the series solution

\[
\begin{align*}
 u(x) \approx \sum_{n=1}^{2k-1} \sum_{m=0}^{M-1} c_{n,m} \psi_{n,m}(x)
\end{align*}
\]

converges to \(u(x) \).
Proof. Let $L^2[0, 1]$ be the Hilbert space and $\psi_{n,m}$ forms a basis of $L^2[0, 1]$. Let us consider

$$u_{r+1}(x) \approx \sum_{n=1}^{2^k-1} \sum_{m=0}^{M-1} c_{n,m}^{r+1} \psi_{n,m}(x), \quad (24)$$

where $c_{n,m}^{r+1} = \langle u_{r+1}(x), \psi_{n,m}(x) \rangle$. Let $S_{k,M}^{r+1}$ be a sequence of partial sums of $c_{n,m}^{r+1} \psi_{n,m}(x)$, we prove that $S_{k,M}^{r+1}$ is a Cauchy sequence in $L^2[0, 1]$ and then we show that $S_{k,M}^{r+1}$ converges to u_{r+1}, when $k, M \to \infty$.

We show that $S_{k,M}^{r+1}$ is a Cauchy sequence. Let $S_{k',M'}^{r+1}$ be arbitrary sums of $c_{n,m}^{r+1} \psi_{n,m}(x)$ with $k > k', M > M'$.

$$\|S_{k,M}^{r+1} - S_{k',M'}^{r+1}\|^2 = \left\| \sum_{n=2^{k'-1}+1}^{2^{k-1}} \sum_{m=0}^{M-1} c_{n,m}^{r+1} \psi_{n,m}(x) \right\|^2 - \sum_{n=2^{k'-1}+1}^{2^{k-1}} \sum_{m=0}^{M-1} c_{n,m}^{r+1} \psi_{n,m}(x) \right\|^2$$

$$= \left\| \sum_{n=2^{k'-1}+1}^{2^{k-1}} \sum_{m=0}^{M-1} c_{n,m}^{r+1} \psi_{n,m}(x) \right\|^2 - \sum_{n=2^{k'-1}+1}^{2^{k-1}} \sum_{m=0}^{M-1} c_{n,m}^{r+1} \psi_{n,m}(x) \right\|^2$$

From the Bessel’s inequality, we have $\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} |c_{n,m}^{r+1}|^2$ that is convergent and

$$\|S_{k,M}^{r+1} - S_{k',M'}^{r+1}\|^2 \to 0,$$

when $k, k', M, M' \to \infty$. This implies that $S_{k,M}^{r+1}$ is a Cauchy sequence and it converges to, say, $y_{r+1}(x) \in L^2[0, 1)$. We need to show that $u_{r+1}(x) = y_{r+1}(x)$,

$$\langle y_{r+1}(x) - u_{r+1}(x), \psi_{n,m}(x) \rangle = \langle y_{r+1}(x), \psi_{n,m}(x) \rangle - \langle u_{r+1}(x), \psi_{n,m}(x) \rangle$$

$$= \lim_{k,M \to \infty} \langle S_{k,M}^{r+1}, \psi_{n,m}(x) \rangle - c_{n,m}^{r+1}$$

$$= c_{n,m}^{r+1} - c_{n,m}^{r+1}$$

$$= 0.$$

Hence $\sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M-1} c_{n,m}^{r+1} \psi_{n,m}(x)$ converges to $u_{r+1}(x)$ as $k, M \to \infty$. Now we show that $u_{r+1}(x) \to u(x)$, when $r \to \infty$. According to the convergence of quasilinearization technique [3], we have

$$\max_x |u_{r+1} - u_r| \leq \frac{s}{8} \left(\frac{p}{4} \right)^2 \left(\max_x (|u_r - u_{r-1}|) \right)^2,$$

(27)
where s, p are positive finite constants and are given in [3]. From Eq (27), we conclude that $u_{r+1}(x) \to u(x)$, when $r \to \infty$, if there is convergence at all.

5 Numerical results and examples

In this section, we implement the CWCQM (Chebyshev wavelets collocation quasi-linearization method) as discussed in section (3) to some of the singular and nonlinear fractional Lane-Emden differential equations. We define the maximum absolute error of L_{∞}:

$$L_{\infty} = \max |u_{Exact}(x) - u_{CWCQM}(x)|, \quad x \in [0, 1].$$

(28)

Example 5.1. Consider the fractional standard Lane-Emden equation that is used to model the thermal behavior of a spherical cloud of gas acting under the mutual attraction of its molecules and subject to the classical laws of thermodynamics [54], [61], [41], [45]:

$$D_{x}^{\alpha} u(x) + \frac{2}{x} D_{x}^{\beta} u(x) + u(x)^{n} = 0,$$

(29)

with initial conditions:

$$u(0) = 1, u'(0) = 0.$$

Exact solutions for $n = 0, 1, 5$, when $\alpha = 2, \beta = 1$ are given in [36].

Case(1):
If $n = 1$, we have:

$$D_{x}^{\alpha} u(x) + \frac{2}{x} D_{x}^{\beta} u(x) + u(x) = 0,$$

(30)

with initial conditions, $u(0) = 1, u'(0) = 0$. Exact solution for $\alpha = 2, \beta = 1$ is $u(x) = \frac{\sin(x)}{x}$.

We implemented the presented method on Eq (30). We plot in Figure 1a Chebyshev approximate solutions for different values of α, β, as can be seen, when the values α, β tend to 2, 1 respectively, the approximate solutions approach to the exact solution. Figure 1b shows that the approximate solution obtained using the method described above is a good approximation of the exact solution of the Eq (30). Table 1 shows the comparison of the error analysis for various methods, such as Adomian Decomposition Method (ADM), Haar Wavelet Collocation Method (HWCM), Haar Wavelet Adaptive Grid Method (HWAGM), Haar Wavelet Collocation Adomian Method (HWCAM). According to the Table 1, we conclude that results produced by the present method are better than the other methods results.

Case(2):
If $n = 5$, we have Eq (29) as:

$$D_{x}^{\alpha} u(x) + \frac{2}{x} D_{x}^{\beta} u(x) + u(x)^{5} = 0,$$

(31)

with initial conditions, $u(0) = 1, u'(0) = 0$. Exact solution for the case where $\alpha = 2$ and $\beta = 1$ is $u(x) = \frac{1}{\sqrt{1 + \frac{x}{2}}}$.
Figure 1: (1a) u_{CWQM} for different values of α, β with $k = 2, M = 8$, (1b) Chebyshev approximate solution, exact solution and absolute error for $\alpha = 2, \beta = 1, k = 2, M = 8$ in Example (5.1) $n = 1$.
The implementation of the Chebyshev wavelets collocation quasilinearization method (CWCQM) to Eq (31) is as follows:

Let us assume that:

\[f(x, u(x)) = u(x)^5, \]

\[f(x, u_{r+1}(x)) = u_r(x)^5 + (u_{r+1}(x) - u_r(x)) f_u'(x, u_r(x)), \]

so:

\[f(x, u_{r+1}(x)) = u_r(x)^5 + (u_{r+1}(x) - u_r(x))(5u_r(x)^4), \]

(33)

by putting Eq (33) in Eq (31), we obtain:

\[D_\alpha^\beta x u_{r+1}(x) + \frac{2}{x} D_\alpha^\beta x u_{r+1}(x) + u_r(x)^5 + (u_{r+1}(x) - u_r(x))(5u_r(x)^4) = 0, \]

(34)

for solving Eq (34) by the Chebyshev wavelet collocation method, we assume that:

\[D_\alpha^\beta x u_{r+1}(x) \approx \sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M-1} c_{n,m}^{r+1} \psi_{n,m}(x). \]

(35)

Lower order derivatives are obtained by integrating Eq (35) and use of initial conditions, we get:

\[D_\alpha^\beta x u_{r+1}(x) \approx \sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M-1} c_{n,m}^{r+1} P_x^{\alpha-\beta} \psi_{n,m}(x) + B x^{1-\beta}, \]

(36)

and

\[u_{r+1}(x) \approx \sum_{n=1}^{2^{k-1}} \sum_{m=0}^{M-1} c_{n,m}^{r+1} P_x^{\alpha} \psi_{n,m}(x) + B x + A, \]

(37)

<table>
<thead>
<tr>
<th>(N)</th>
<th>(E_{ADM,[54]})</th>
<th>(E_{HWCM,[45]})</th>
<th>(E_{HWAGM,[23]})</th>
<th>(E_{HWCAM,[41]})</th>
<th>(E_{CWCQM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6.4356e - 03</td>
<td>1.8562e - 05</td>
<td>5.0856e - 06</td>
<td>7.2156e - 05</td>
<td>6.7870e - 08</td>
</tr>
<tr>
<td>16</td>
<td>7.3373e - 03</td>
<td>5.0012e - 06</td>
<td>1.0012e - 06</td>
<td>4.3274e - 05</td>
<td>1.1146e - 11</td>
</tr>
<tr>
<td>32</td>
<td>7.8221e - 03</td>
<td>1.2932e - 06</td>
<td>3.0938e - 07</td>
<td>1.0015e - 05</td>
<td>9.6485e - 12</td>
</tr>
<tr>
<td>64</td>
<td>8.0733e - 03</td>
<td>3.2854e - 07</td>
<td>9.1857e - 08</td>
<td>9.7345e - 06</td>
<td>7.2153e - 12</td>
</tr>
</tbody>
</table>

Table 1: Comparison of the error analysis in Example 5.1, \(n = 1, \alpha = 2, \beta = 1 \)
using Eqs ((37),(36),(35)) in Eq (34), replacing \(\approx \) by =, and using collocation points
\[x_j = \frac{j-0.5}{2^{k-1} M}, \quad j = 1, 2, \ldots, 2^{k-1} M \]
to obtain:
\[
\begin{align*}
\sum_{n=1}^{2^{k-1} M-1} \sum_{m=0}^{r+1} c_{n,m}^{r+1} \psi_{n,m}(x_j) + 2 \frac{x_j}{x_j} \left(\sum_{n=1}^{2^{k-1} M-1} \sum_{m=0}^{r+1} c_{n,m}^{r+1} P_x^{\alpha-\beta} \psi_{n,m}(x_j) \right) \\
+ B \frac{x_j^{1-\beta}}{\Gamma(2-\beta)} + u_r(x_j)^5 + \left(\sum_{n=1}^{2^{k-1} M-1} \sum_{m=0}^{r+1} c_{n,m}^{r+1} P_x^{\alpha} \psi_{n,m}(x_j) \right) \\
+ B x_j + A - u_r(x_j) \right) (5 u_r(x_j)^4) = 0. \tag{38}
\end{align*}
\]

For \(r = 0 \), and using initial approximation \(u_0(x) = A \), we get \(c^1 \)-coefficients and putting them in Eq (37), we get the \(u_1(x) \) approximate solution, similarly for \(r = 1 \), solving linear system of equations (38), we obtain \(c^2 \)-coefficients and we get the \(u_2(x) \) and so on.

We implemented the presented method on Eq (31) for \(k = 2, M = 8 \). We plotted in Figure 2a the Chebyshev approximate solutions for different values of \(\alpha, \beta \), as can be seen, when the values \(\alpha, \beta \) tend to 2, 1 respectively, the approximate solutions approach the exact solution. Figure 2b shows that the absolute errors of 1st-3rd approximate solutions obtained using the method described above is a good approximation of the exact solution of the Eq (31), and indicate by increasing iterations, the absolute error decreasing. Table 2 shows the comparison of the error analysis for various methods, such as Adomian Decomposition Method (ADM) [54], Haar Wavelet Collocation Method (HWCM) [45], Haar Wavelet Adaptive Grid Method (HWAGM) [46], Haar Wavelet Collocation Adomian Method (HWCAM) [41]. According to the Table 2, we conclude that results produced by the present method are better than the other methods. In Tables 2, 4 and 6 \(N \) represents the dimension of the approximate solutions. For comparison our proposed method approximate solution with the Runge-Kutta of order 4, we set the Table 3, as can be seen our results much better than the Runge-Kutta’s approximate solution. Also, we implemented the presented method on Eq (31) for \(k = 1, M = 8 \) and by solving the system (38) in the collocation points as
\[x_1 = \frac{1}{16}, x_2 = \frac{3}{16}, x_3 = \frac{5}{16}, \ldots, x_8 = \frac{15}{16} \],
we get the \(C_{n,m}^3 \) coefficients as
\[
C^3 = \begin{pmatrix}
-0.194349084069466 \\
0.070070088027989 \\
0.007344030232925 \\
-0.004296362010761 \\
0.000146805258182 \\
0.000129579901339 \\
-0.000017329511545 \\
-0.000002478064867
\end{pmatrix},
\]
replacing these values in Eq (37) and using the initial conditions, we get the following
Chebyshev approximate solution for different values of α, β for $k=2, M=8$ in 3rd iter

- $\alpha=1.5, \beta=0.5$
- $\alpha=1.75, \beta=0.75$
- $\alpha=1.85, \beta=0.85$
- $\alpha=1.95, \beta=0.95$
- $\alpha=2, \beta=1$ (Exact solution)
- $\alpha=2, \beta=1$ (Chebyshev approximate solution)

(b)

Figure 2: (2a) u_{CWQM} for different values of α, β with $k = 2, M = 8$, (2b) Absolute errors of different iterations for $\alpha = 2, \beta = 1, k = 2, M = 8$ (b) in Eq (31) $n = 5$.
Figure 3: u_3, exact solution and the absolute error of the Example (5.1), $n = 5$ for $k = 1, M = 8$

approximate solution in the 3rd iteration

$$u_3(x) = -0.00063629 x^9 + 0.00143305 x^8 + 0.00396832 x^7$$
$$- 0.0149915 x^6 + 0.001646 x^5 + 0.0412078 x^4 + 0.0000690821 x^3$$
$$- 0.166671 x^2 + 1.$$ (39)

In the Figure 3, we plotted the Eq (39), exact solution and the absolute error in range $0 \leq x \leq 1$. Figure 3 shows that, the proposed method has a good performance dealing with the singularity in the point $x = 0$.

<table>
<thead>
<tr>
<th>N</th>
<th>$E_{ADM}[54]$</th>
<th>$E_{HWCM}[45]$</th>
<th>$E_{HWAGM}[23]$</th>
<th>$E_{HWACM}[41]$</th>
<th>E_{CWCQM}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L_∞</td>
<td>L_∞</td>
<td>L_∞</td>
<td>L_∞</td>
<td>L_∞</td>
</tr>
<tr>
<td>8</td>
<td>3.0591e − 02</td>
<td>9.2374e − 05</td>
<td>2.2745e − 05</td>
<td>7.7048e − 05</td>
<td>4.0104e − 07</td>
</tr>
<tr>
<td>16</td>
<td>3.4652e − 02</td>
<td>2.4231e − 05</td>
<td>6.4165e − 06</td>
<td>1.0573e − 05</td>
<td>7.7340e − 11</td>
</tr>
<tr>
<td>32</td>
<td>3.6814e − 02</td>
<td>6.2101e − 06</td>
<td>1.0121e − 06</td>
<td>4.3726e − 06</td>
<td>1.8416e − 11</td>
</tr>
<tr>
<td>64</td>
<td>3.7929e − 02</td>
<td>1.5723e − 06</td>
<td>3.5372e − 07</td>
<td>9.6483e − 07</td>
<td>8.7315e − 12</td>
</tr>
</tbody>
</table>

Table 2: Comparison of the error analysis in Example (5.1), $n = 5$, $\alpha = 2$, $\beta = 1$

Example 5.2. Consider the following singular nonlinear fractional Lane-Emden equation:

$$D_x^\alpha u(x) + \frac{2}{x} D_x^\beta u(x) + 8 e^{u(x)} + 4 e^{\frac{u(x)}{2}} = 0, \quad 0 < x \leq 1,$$ (40)
<table>
<thead>
<tr>
<th>t</th>
<th>u_{CWCQM}</th>
<th>u_{Exact}</th>
<th>E_{CWCQM}</th>
<th>$u_{Runge-Kutta}$</th>
<th>$E_{Runge-Kutta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01562</td>
<td>9.9996e-01</td>
<td>9.9996e-01</td>
<td>8.0000e-15</td>
<td>9.9996e-01</td>
<td>1.1263e-11</td>
</tr>
<tr>
<td>0.07812</td>
<td>9.9898e-01</td>
<td>9.9898e-01</td>
<td>0</td>
<td>9.9898e-01</td>
<td>2.4146e-10</td>
</tr>
<tr>
<td>0.10938</td>
<td>9.9801e-01</td>
<td>9.9801e-01</td>
<td>1.0000e-15</td>
<td>9.9801e-01</td>
<td>2.0345e-10</td>
</tr>
<tr>
<td>0.14063</td>
<td>9.9672e-01</td>
<td>9.9672e-01</td>
<td>1.0000e-15</td>
<td>9.9672e-01</td>
<td>2.0641e-10</td>
</tr>
<tr>
<td>0.20313</td>
<td>9.9319e-01</td>
<td>9.9319e-01</td>
<td>1.0000e-15</td>
<td>9.9319e-01</td>
<td>6.6344e-10</td>
</tr>
<tr>
<td>0.23438</td>
<td>9.9097e-01</td>
<td>9.9097e-01</td>
<td>7.0000e-15</td>
<td>9.9097e-01</td>
<td>9.6500e-10</td>
</tr>
<tr>
<td>0.26563</td>
<td>9.8844e-01</td>
<td>9.8844e-01</td>
<td>1.4000e-14</td>
<td>9.8844e-01</td>
<td>2.0501e-09</td>
</tr>
<tr>
<td>0.29688</td>
<td>9.8563e-01</td>
<td>9.8563e-01</td>
<td>4.0000e-14</td>
<td>9.8563e-01</td>
<td>6.4304e-13</td>
</tr>
<tr>
<td>0.32813</td>
<td>9.8252e-01</td>
<td>9.8252e-01</td>
<td>6.4000e-14</td>
<td>9.8252e-01</td>
<td>1.0550e-10</td>
</tr>
<tr>
<td>0.42188</td>
<td>9.7159e-01</td>
<td>9.7159e-01</td>
<td>1.1100e-13</td>
<td>9.7159e-01</td>
<td>3.6357e-09</td>
</tr>
<tr>
<td>0.45313</td>
<td>9.6744e-01</td>
<td>9.6744e-01</td>
<td>1.2100e-13</td>
<td>9.6744e-01</td>
<td>8.6139e-09</td>
</tr>
<tr>
<td>0.48438</td>
<td>9.6305e-01</td>
<td>9.6305e-01</td>
<td>1.3500e-13</td>
<td>9.6305e-01</td>
<td>7.2980e-09</td>
</tr>
<tr>
<td>0.51563</td>
<td>9.5843e-01</td>
<td>9.5843e-01</td>
<td>9.6000e-14</td>
<td>9.5843e-01</td>
<td>6.6067e-09</td>
</tr>
<tr>
<td>0.54688</td>
<td>9.5360e-01</td>
<td>9.5360e-01</td>
<td>1.8000e-14</td>
<td>9.5360e-01</td>
<td>1.2260e-08</td>
</tr>
<tr>
<td>0.60938</td>
<td>9.4332e-01</td>
<td>9.4332e-01</td>
<td>1.0800e-13</td>
<td>9.4332e-01</td>
<td>9.9493e-09</td>
</tr>
<tr>
<td>0.64063</td>
<td>9.3790e-01</td>
<td>9.3790e-01</td>
<td>1.6200e-13</td>
<td>9.3790e-01</td>
<td>1.4632e-08</td>
</tr>
<tr>
<td>0.67188</td>
<td>9.3231e-01</td>
<td>9.3231e-01</td>
<td>2.1000e-13</td>
<td>9.3231e-01</td>
<td>1.7006e-08</td>
</tr>
<tr>
<td>0.70313</td>
<td>9.2656e-01</td>
<td>9.2656e-01</td>
<td>2.5300e-13</td>
<td>9.2656e-01</td>
<td>1.5520e-08</td>
</tr>
<tr>
<td>0.73438</td>
<td>9.2066e-01</td>
<td>9.2066e-01</td>
<td>2.8800e-13</td>
<td>9.2066e-01</td>
<td>1.5663e-08</td>
</tr>
<tr>
<td>0.76563</td>
<td>9.1463e-01</td>
<td>9.1463e-01</td>
<td>3.4200e-13</td>
<td>9.1463e-01</td>
<td>2.1368e-08</td>
</tr>
<tr>
<td>0.79688</td>
<td>9.0846e-01</td>
<td>9.0846e-01</td>
<td>4.0700e-13</td>
<td>9.0846e-01</td>
<td>2.1868e-08</td>
</tr>
<tr>
<td>0.82813</td>
<td>9.0218e-01</td>
<td>9.0218e-01</td>
<td>4.6500e-13</td>
<td>9.0218e-01</td>
<td>2.0381e-08</td>
</tr>
<tr>
<td>0.85938</td>
<td>8.9580e-01</td>
<td>8.9580e-01</td>
<td>5.1700e-13</td>
<td>8.9580e-01</td>
<td>2.1832e-08</td>
</tr>
<tr>
<td>0.89063</td>
<td>8.8932e-01</td>
<td>8.8932e-01</td>
<td>5.6400e-13</td>
<td>8.8932e-01</td>
<td>2.4842e-08</td>
</tr>
<tr>
<td>0.92188</td>
<td>8.8275e-01</td>
<td>8.8275e-01</td>
<td>6.0700e-13</td>
<td>8.8275e-01</td>
<td>2.5148e-08</td>
</tr>
<tr>
<td>0.95313</td>
<td>8.7611e-01</td>
<td>8.7611e-01</td>
<td>6.4400e-13</td>
<td>8.7611e-01</td>
<td>2.4392e-08</td>
</tr>
<tr>
<td>0.98438</td>
<td>8.6940e-01</td>
<td>8.6940e-01</td>
<td>6.7600e-13</td>
<td>8.6940e-01</td>
<td>2.5670e-08</td>
</tr>
</tbody>
</table>

Table 3: Error analysis and comparison CWCQM and the Runge-Kutta of order 4 for Example (5.1), Eq (31) with $k = 3, M = 8$
with initial conditions: \(u(0) = u'(0) = 0 \). Exact solution for the case where \(\alpha = 2 \) and \(\beta = 1 \) is \(u(x) = -2ln(1 + x^2) \) \([45]\).

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
 t & u_{ADM}[54] & u_{VIM}[61] & u_{HWCM}[45] & u_{exact}[45] & u_{CWCQM} \\
\hline
(\frac{1}{32}) & -0.001952 & -0.001952 & -0.001949 & -0.001952 & -0.001952 \\
(\frac{3}{32}) & -0.017501 & -0.017501 & -0.017504 & -0.017501 & -0.017501 \\
(\frac{5}{32}) & -0.048241 & -0.048241 & -0.048255 & -0.048241 & -0.048241 \\
(\frac{7}{32}) & -0.093483 & -0.093483 & -0.093513 & -0.093483 & -0.093483 \\
(\frac{9}{32}) & -0.152257 & -0.152256 & -0.152309 & -0.152257 & -0.152257 \\
(\frac{11}{32}) & -0.223376 & -0.223378 & -0.223454 & -0.223376 & -0.223376 \\
(\frac{13}{32}) & -0.305508 & -0.305466 & -0.305619 & -0.305509 & -0.305509 \\
(\frac{15}{32}) & -0.397247 & -0.397080 & -0.397399 & -0.397253 & -0.397253 \\
(\frac{17}{32}) & -0.497163 & -0.496615 & -0.497381 & -0.497196 & -0.497196 \\
(\frac{19}{32}) & -0.603819 & -0.602281 & -0.604194 & -0.603967 & -0.603967 \\
(\frac{21}{32}) & -0.715706 & -0.711907 & -0.716548 & -0.716277 & -0.716277 \\
(\frac{23}{32}) & -0.831008 & -0.822627 & -0.833257 & -0.832944 & -0.832944 \\
(\frac{25}{32}) & -0.947015 & -0.930367 & -0.953261 & -0.952905 & -0.952905 \\
(\frac{27}{32}) & -1.058866 & -1.029114 & -1.075621 & -1.075224 & -1.075224 \\
(\frac{29}{32}) & -1.157061 & -1.109891 & -1.199524 & -1.199089 & -1.199089 \\
(\frac{31}{32}) & -1.222860 & -1.159399 & -1.324275 & -1.323804 & -1.323804 \\
\hline
\end{array}
\]

Table 4: Comparison of ADM, VIM, HWCM and CWCQM solutions with the Exact solution for \(N = 16 \) in Example 5.2, for \(\alpha = 2, \beta = 1 \)

We plotted absolute errors of different iterations (1st-4th) in Figure 4a, as can be seen, by increasing iterations the absolute errors decrease, also Figure 4b shows that by increasing \(M \) approximate solutions are in a good coincidence with the exact solution, and the absolute errors are getting a decrease. The obtained numerical solution of the Example 5.2 is presented in comparison with the ADM, VIM, HWCM solutions and the exact solution in Table 4 for \((N = 16), k = 2, M = 8 \). The error analysis for different values of \(\alpha, \beta \) is given in Table 5, which shows that \(\alpha, \beta \)-values tend to 2, 1 respectively, \(L_\infty \) are getting decreases.

Example 5.3. Consider the fractional Lane-Emden equation:

\[
D_x^\alpha u(x) + \frac{2}{x}D_x^\beta u(x) + e^{u(x)}(6 - 4x^2e^{u(x)}) = 0, \quad 0 < x \leq 1, \quad (41)
\]

with initial conditions: \(u(0) = -ln(4), u'(0) = 0 \). Exact solution for \(\alpha = 2, \beta = 1 \) is \(u(x) = ln(\frac{1}{4+x}) \) \([48],[45]\).
Figure 4: (4a) Absolute errors of different iterations for $\alpha = 2, \beta = 1, k = 2, M = 8$, (4b) Absolute error for different values of M with $k = 2, \alpha = 2, \beta = 1$ in Example 5.2

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>L_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.7, \beta = 0.7$</td>
<td>$1.0128e-01$</td>
<td>$1.9768e-01$</td>
</tr>
<tr>
<td>$1.85, \beta = 0.85$</td>
<td>$3.4345e-02$</td>
<td>$1.0128e-01$</td>
</tr>
<tr>
<td>$1.95, \beta = 0.95$</td>
<td>$2.6207e-09$</td>
<td>$3.4345e-02$</td>
</tr>
<tr>
<td>$2, \beta = 1$</td>
<td></td>
<td>$2.6207e-09$</td>
</tr>
</tbody>
</table>

Table 5: Comparison of the error analysis in Example 5.2, for different values of α, β
Figure 5: (5a) Absolute errors of Haar and Chebyshev approximate solutions (3rd iteration), $J = 3$, for Haar, $k = 2, M = 8$ for Chebyshev approximate solutions, Haar and Chebyshev approximate solutions (3rd iteration) and Exact solution, (5b) $J = 3$, for Haar, $k = 2, M = 8$ for Chebyshev solutions in Example 5.3
Amir Mohammadi, Ghader Ahmadnezhad, Nasser Aghazadeh

Figure 6: Approximate solutions of the CWCQM, HWCM and HWCAM methods for \(\alpha = 1.85, \beta = 0.85 \)

<table>
<thead>
<tr>
<th>N</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_\infty)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HWCM[45]</td>
<td>8.94e-05</td>
<td>2.02e-05</td>
<td>5.22e-06</td>
<td>1.32e-06</td>
<td>3.34e-07</td>
<td>8.38e-08</td>
<td>2.10e-08</td>
</tr>
<tr>
<td>HWCM[48]</td>
<td>1.95e-03</td>
<td>4.89e-04</td>
<td>1.22e-04</td>
<td>3.06e-05</td>
<td>7.65e-06</td>
<td>1.91e-06</td>
<td>4.78e-07</td>
</tr>
<tr>
<td>CWCQM</td>
<td>5.32e-07</td>
<td>3.70e-12</td>
<td>1.25e-14</td>
<td>9.52e-16</td>
<td>4.23e-16</td>
<td>1.02e-16</td>
<td>8.62e-17</td>
</tr>
</tbody>
</table>

Table 6: Comparison of error analysis in Example 5.3 in the 3rd iteration, for \(\alpha = 2, \beta = 1 \)

We implemented the present method for Eq (5.3) by using \(u_0(x) = -\ln(4) \) as initial approximation. Figure 5a shows the comparison of the absolute error for the Haar wavelet collocation method (HWCM) [45] and Chebyshev Wavelet Collocation Quasilinearization Method (CWCQM), as can be seen it had better approximate solutions than HWCM. We make a comparison between the results obtained by the CWCQM method and the Haar wavelet collocation method [45], [48] in Table 6. It can be seen from Table 6, the approximate solution obtained by the present method is in good coincidence accuracy with the exact solution in comparison of two other methods. In Figure 6, we plotted the approximate solutions of the CWCQM, HWCM and HWCAM methods for \(\alpha = 1.85 \) and \(\beta = 0.85 \), as can be seen the approximate solution obtained by the CWCQM has a better approximation than other methods.

Example 5.4. Consider the Lane-Emden equation of the fractional derivatives for a self-gravitating isothermal gas sphere [41]:

\[
D_\alpha^x u(x) + \frac{2}{x} D_\beta^x u(x) - e^{u(x)} = 0, \quad 0 < x \leq 1,
\] (42)
with initial conditions: \(u(0) = 0, u'(0) = 0 \), where \(u(x) \) is the Newtonian gravitational potential function and \(x \) is the dimensionless radius [41]. We plotted the approximate solutions of different values of \(\alpha, \beta \) obtained from the present method in Figure 7, as it can be seen, tending \(\alpha, \beta \) to 2, 1 respectively, approximate solutions approach the exact solution. Eq (42) is solved by the fractional approximation technique [31], a power series solution method [34], and Euler-transformed series [13]. In Table 7 exact solution represents the solution obtained from Runge-Kutta method of order 4 (this equation is devoid of an exact solution). To compare the proposed method with the others, we are going to consider the solution obtained by Runge-Kutta method of order 4 as the exact solution. It is noteworthy that it does not mean the Runge-Kutta method solution surpasses our method. We have just compared them). \(u_{HWCAM} \) is the obtained solution by the Haar Wavelet Collocation Adomian Method [41]. In [41], U. Saeed has solved Eq (42) by HWCAM in \(J = 8, N = 512 \) and the 23rd iteration. It can be seen from the Table 7, when \(\alpha = 2, \beta = 1 \), our approximate solutions are better than those obtained in [13], [31], [34], [41].

6 Conclusion

In this paper, we use the second-kind Chebyshev wavelet to obtain the approximate solutions of the Lane-Emden singular and nonlinear fractional differential equations. The matrices of the integral operator of the fractional order of the Chebyshev wavelets were used to convert the Lane-Emden equation to a linear system of algebraic equations. Solving the Lane-Emden singular and nonlinear fractional differential equations are difficult due to the singularity at the point \(x = 0 \). The proposed method is very convenient for
Table 7: Comparison of the approximate solutions for the isothermal gas sphere equation when $\alpha = 2, \beta = 1$ in Example 5.4

<table>
<thead>
<tr>
<th>x</th>
<th>$u_{\text{Rung-Kutta}}^{[41]}$</th>
<th>$u_{\text{HW CAM}}^{[41]}$</th>
<th>u_{CWQM}</th>
<th>$\text{Mirza}^{[31]}$</th>
<th>$\text{Nouh}^{[34]}$</th>
<th>$\text{Hunter}^{[13]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.0016666</td>
<td>0.0016658</td>
<td>0.001666</td>
<td>0.0016</td>
<td>0.0166</td>
<td>0.0016</td>
</tr>
<tr>
<td>0.2</td>
<td>0.006653</td>
<td>0.0066534</td>
<td>0.006653</td>
<td>0.0066</td>
<td>0.0333</td>
<td>0.0065</td>
</tr>
<tr>
<td>0.3</td>
<td>0.014933</td>
<td>0.0149329</td>
<td>0.014933</td>
<td>0.0149</td>
<td>0.0500</td>
<td>0.0145</td>
</tr>
<tr>
<td>0.4</td>
<td>0.026455</td>
<td>0.0264555</td>
<td>0.026455</td>
<td>0.0266</td>
<td>0.0666</td>
<td>0.0253</td>
</tr>
<tr>
<td>0.5</td>
<td>0.041154</td>
<td>0.0411540</td>
<td>0.041154</td>
<td>0.0416</td>
<td>0.0833</td>
<td>0.0385</td>
</tr>
<tr>
<td>0.6</td>
<td>0.058944</td>
<td>0.0589441</td>
<td>0.058944</td>
<td>0.0598</td>
<td>0.1000</td>
<td>0.0536</td>
</tr>
<tr>
<td>0.7</td>
<td>0.079726</td>
<td>0.0797260</td>
<td>0.079726</td>
<td>0.0813</td>
<td>0.1166</td>
<td>0.0700</td>
</tr>
<tr>
<td>0.8</td>
<td>0.103386</td>
<td>0.1033861</td>
<td>0.103386</td>
<td>0.1060</td>
<td>0.1333</td>
<td>0.0870</td>
</tr>
<tr>
<td>0.9</td>
<td>0.129799</td>
<td>0.1297985</td>
<td>0.129799</td>
<td>0.1338</td>
<td>0.1500</td>
<td>0.1038</td>
</tr>
<tr>
<td>1.0</td>
<td>0.158828</td>
<td>0.1588277</td>
<td>0.158828</td>
<td>0.1646</td>
<td>0.1666</td>
<td>0.1198</td>
</tr>
</tbody>
</table>

Solving the Lane-Emden fractional equations since the initial conditions are all considered during the process of constructing the approximate solutions. As was shown in Examples (5.1, 5.2, 5.3, 5.4), the method of the Chebyshev wavelet effectively and efficiently managed to solve the Lane-Emden equations of the fractional order. The results of this analysis are as follows:

1) The present method gives better accuracy in comparison with the other numerical methods [45], [48], [23]. Choose of small values of k, M gives better approximate solutions.

2) This method is applicable to all type of singular initial value problems.

3) This scheme is easy to implement in computer programs.

4) Unlike other methods (such as method [46]), this method does not require a long calculation to obtain a general order integration matrix.

References

Chebyshev-quasilinearization method

[26] H.J. Lane: On the theoretical temperature of the Sun; under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment. American Journal of Science and Arts 50 (148) (1870) 57–74.

Received: May 06, 2019
Accepted for publication: August 18, 2019
Communicated by: Diana Barseghyan