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Chebyshev-quasilinearization method for solving fractional
singular nonlinear Lane-Emden equations

Amir Mohammadi, Ghader Ahmadnezhad, Nasser Aghazadeh

Abstract. In this paper, we propose a method for solving some classes of the sin-
gular fractional nonlinear Lane-Emden type equations. The method is proposed by
utilizing the second-kind Chebyshev wavelets in conjunction with the quasilineariza-
tion technique. The operational matrices for the second-kind Chebyshev wavelets are
used. The method is tested on the fractional standard Lane-Emden equation, the
fractional isothermal gas spheres equation, and some other examples. We compare
the results produced by the present method with some well-known results to show
the accuracy and efficiency of the method.

1 Introduction

Fractional ordinary and partial differential equations have found many applications
in many physical, chemical and engineering problems. These equations provide a better
description than the integer order of derivatives due to having a fractional derivative for
describing fluid mechanics and viscoelastic theory. The most important advantage of frac-
tional derivatives in describing physical phenomena is the more precise modeling that is
ignored for the integer order derivatives of these cases. Modeling and mathematical sim-
ulation of physical phenomena and processes, based on their characteristics, leads to the
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creation of fractional differential equations and the necessity of solving such equations, but
the important point is that most of the fractional equations do not always have well-known
exact solutions. There are a variety of numerical methods that provide approximate solu-
tions for these equations, such as the Adomian Decomposition Method (ADM) [5], [42], [57],
the Homotopy Perturbation Method (HPM) [27], [33], the Variational Iteration Method
(VIM) [12], [32], the generalized Differential Transform Method (DTM) [11], [35], and col-
location methods [2], [43]. In the meantime, spectral methods have been widely used for
numerical solutions of fractional differential equations due to excellent error properties.
The collocation method, the Galerkin, and Tau methods are three commonly used meth-
ods in the spectral scheme. Collocation methods have successfully been used to simulate
numerically many problems in science and engineering, see [44], [48], [64]. In recent years,
especially in the last two decades, the application of wavelets has greatly expanded in
solving the fractional differential equations [52], [57], [63], [64]. Recently, the operational
matrices of Chebyshev, Legendre, and Haar wavelets have been used in numerically solving
many of the fractional differential equations [12], [38], [48], [52], [54], [61], [63].

Many problems arising in the field of mathematical physics and astrophysics can be
modeled by the Lane-Emden type initial value problems. In this work, we consider follow-
ing form of the fractional singular nonlinear Lane-Emden equations:

Dα
xu(x) +

2

x
Dβ
xu(x) + f(x, u(x)) = 0, x > 0, 1 < α ≤ 2, 0 < β ≤ 1, (1)

with initial conditions:
u(0) = A, u

′
(0) = B, (2)

where A and B are constants, f(x, u) is the nonlinear function of u, x and u are the in-
dependent and dependent variables respectively. For α = 2 and β = 1, we have classical
Lane-Emden type equations which are nonlinear ordinary differential equations which are
categorized as singular initial value problems. The Lane-Emden equation was first stud-
ied by astrophysicists Jonathan Homer Lane and Robert Emden, where they considered
the thermal behavior of a spherical cloud of gas acting under the mutual attraction of its
molecules and subject to the classical laws of thermodynamics [7], [26], [58], [60]. Due
to the presence of a singularity in x = 0, solving such equations is associated with dif-
ficulties. It should be mentioned that for non-fractional equation there is a proof that
one can obtain analytic solution around fixed-singularity x = 0 [25]. There are meth-
ods for solving equation (1) with (2), such as the collocation methods [39], [40], tangent
chord method [9], finite difference methods [4], [17], spline finite difference methods [16],
B-Spline method [18], spline method [24], Chebyshev economization method [21], Cubic
spline method [20], [22], Adomian decomposition method [10], [14], Adomian decomposi-
tion method with Green’s function [49], [50], variational iteration method [59], [60], the
optimal variational iteration method [47], homotopy analysis method [6] and the references
cited therein.

Wavelets, as a well-known base set, are used to solve fractional differential equations;
the use of wavelets, especially orthogonal wavelets, has been widely used to solve differential
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equations in the last two decades [29], [53]. The second-kind Chebyshev wavelets have
been very much considered due to their useful properties and their ability to solve different
types of fractional differential equations [64]. Babolian and Fattahzadeh use the Chebyshev
wavelet operational matrix for numerical solution of differential equations [1], Dehghan use
the Chebyshev finite difference methods for Fredholm integro-differential equation [8], Zhu
and Fan solving fractional nonlinear Fredholm integro-differential equations by the second
kind Chebyshev wavelet [62] and Iqbal and et all use the Chebyshev wavelets method for
solving fractional differential equations [15].

The aim of this work is applying the second-kind Chebyshev wavelet collocation method
combined with the quasilinearization technique for solving fractional differential equa-
tions with a singularity at the point x = 0. The quasilinearization technique was in-
troduced by Bellman and Kalaba [19]. This technique indeed is a generalization of the
Newton-Raphson method to solve nonlinear ordinary and partial differential equations.
In this work, we convert the nonlinear singular Lane-Emden equation to a linear equa-
tion, then we solve this linear equation by the second-kind Chebyshev wavelet collocation
method. Operational matrices of fractional integration are utilized to obtain approxi-
mate solutions. We compare our approximate solutions with other results introduced
in [13], [23], [31], [34], [41], [45], [48], [54], [61].

2 Preliminaries and some notations

2.1 Fractional integral and derivative

In this section, we present some definitions, notations and preliminaries of the fractional
calculus theory which will be used in this work [37].

Definition 2.1. The Riemann-Liouville fractional integral operator of order α ≥ 0 of a
function is defined as:

Jαu(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1u(τ)dτ, α, t > 0,

J0u(t) = u(t).

The properties of the operator Jα are given as follows:

(i) JαJβu(t) = Jα+βu(t),

(ii) JβJαu(t) = JαJβu(t),

(iii) Jαtγ = Γ(γ+1)
Γ(α+γ+1)

tα+γ.

Definition 2.2. The fractional derivative of u(t) in the Caputo sense is defined as:

Dαu(t) =

{
dru(t)
dtr

α = r ∈ N ;
1

Γ(r−α)

∫ t
0

u(r)

(1−τ)α−r+1dτ, 0 ≤ r − 1 < α < r,
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It be noticed that u(r) is the integer order differentiation of u(t).
For instance, u(t) = t3 we want to calculate of D1.5u(t), so 1 < α < 2 then r = 2,

D1.5t3 =
1

Γ(2− 1.5)

∫ t

0

6t

(t− τ)0.5dτ =
12t

3
2

√
π

2.2 The second-kind of Chebyshev wavelets

The second-kind of Chebyshev wavelets ψn,m(t) = ψ(k, n,m, t) have four arguments k,
m, n, t, where k can assume any positive integer, n = 1, 2, . . . , 2k−1, m is the degree of the
second-kind Chebyshev polynomials and t is the time. They are defined on the interval
[0, 1) as:

ψn,m(t) =

{
2
k
2

√
2
π
Um(2kt− 2n+ 1) n−1

2k−1 ≤ t ≤ n
2k−1

0 otherwise,
(3)

where Um(t)’s are the second-kind Chebyshev polynomials of degree m which are orthog-
onal with respect to the weight function w(t) =

√
1− t2 on the interval [−1, 1] and satisfy

the following recursive formula:

U0(t) = 1, U1(t) = 2t,

Um+1(t) = 2tUm(t)− Um−1(t), m = 1, 2, 3, . . .

The weight function w̃(t) = w(2t− 1) has to be dilated and translated as

wn(t) = w(2kt− 2n+ 1).

A function f(x) ∈ L2(R) defined over [0, 1) can be expanded by the second-kind Chebyshev
wavelets as:

f(x) =
∞∑
n=1

∞∑
m=1

cn,mψn,m(x), (4)

where
cn,m = 〈f(x), ψn,m(x)〉.

If the infinite series in Eq (4) is truncated, then it can be written as:

f(x) ∼=
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x) = CTΨ(x), (5)

which the coefficient vector C and the second-kind Chebyshev wavelet function vector Ψ(x)
are m

′
= 2k−1M column vectors. For simplicity, Eq (5) can be written as:

f(x) ∼=
m
′∑

i=1

ciψi = CTΨ(x), where ci = cn,m and ψi(t) = ψn,m(t). (6)
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The index i can be determined by the relation i = M(n− 1) +m+ 1; thus, we have:

C = [c1, c2, c3, . . . , cm′ ]
T and Ψ(t) = [ψ1, ψ2, ψ3, . . . , ψm′ ]

T .

By taking the collocation points as following xi = 2i−1
2kM

, i = 1, 2, 3, . . . , 2k−1M, we define
the second-kind Chebyshev wavelets matrix Φ(x)m′×m′ as:

Φm′×m′ =
[
Ψ(

1

2m′
),Ψ(

3

2m′
), . . . ,Ψ(

2m′ − 1

2m′
)
]
,

where m′ = 2k−1M . For example, when M = 4 and k = 2, the second-kind Chebyshev
wavelets matrix is expressed as:

Φ8×8 =



1.5958 1.5958 1.5958 1.5958 0 0 0 0

−2.3937 −2.3937 −2.3937 −2.3937 0 0 0 0

1.9947 1.9947 1.9947 1.9947 0 0 0 0

−0.5984 −0.5984 −0.5984 −0.5984 0 0 0 0

0 0 0 0 1.5958 1.5958 1.5958 1.5958

0 0 0 0 −2.3937 −2.3937 −2.3937 −2.3937

0 0 0 0 1.9947 1.9947 1.9947 1.9947

0 0 0 0 −0.5984 −0.5984 −0.5984 −0.5984


.

2.3 The fractional integral of the second-kind Chebyshev wavelets

In this section, a fractional integral formula of the Chebyshev wavelets in the Riemann-
Liouville sense is derived by means of the shifted second-kind Chebyshev polynomials U∗m,
which plays an important role in dealing with the time fractional equations.

Theorem 2.3. The fractional integral of a Chebyshev wavelet defined on the interval [0, 1]
with compact support [ n−1

2k−1 ,
n

2k−1 ] is given by:

Iαψn,m(x) =



0, x < 2n−2
2k

2
k
2

√
2
π

[
m∑
i=0

i∑
r=0

r∑
j=0

2ii!(i+m+1)!(−1)i+j+r2k(r−j)

(2i+1)!j!(m−i)!(i−r)!Γ(α−j+r+1)

×
(
x− 2n−2

2k

)α−j+r]
, 2n−2

2k
≤ x ≤ 2n

2k

2
k
2

√
2
π

[
m∑
i=0

i∑
r=0

r∑
j=0

2i(−1)i+ri!(i+m+1)!2k(r−j)

(2i+1)!j!(m−i)!(i−r)!Γ(α−j+r+1)

×
(

(−1)j
(
x− 2n−2

2k

)α−j+r − (x− 2n
2k

)α−j+r)]
, x > 2n

2k

(7)

Proof. The general form of the second kind Chebyshev polynomials is:

Um(x) =
m∑
i=0

i∑
r=0

(−1)i+r2i(m+ i+ 1)!i!

r!(i− r)!(m− i)!(2i+ 1)!
xr. (8)
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We now derive the operator Iα for Ψ(t)

IαΨ(x) = Pα
x .

To obtain Iαψn,m(t), we use the Laplace transform. We get the following relation for
the second kind Chebyshev wavelets

ψn,m(x) = 2
k
2

√
2

π

(
ν 2n−2

2k
(x)Um(2kx− (2n− 1))− ν 2n

2k
(x)Um(2kx− (2n− 1))

)
, (9)

where νc(x) is the unit step function defined as

νc(x) =

{
1, x ≥ c,
0, x < c.

By taking the Laplace transform from Eq (9), we get

L{ψn,m(x)} = 2
k
2

√
2

π
L

{
ν 2n−2

2k
(x)Um(2k(x− 2n− 2

2k
)− 1) (10)

− ν 2n

2k
(t)Um(2k(x− 2n

2k
) + 1)

}

= 2
k
2

√
2

π
e−

2n−2

2k
sL
{
Um(2kx− 1)

}
− 2

k
2

√
2

π
e−

2n

2k
sL
{
Um(2kx+ 1)

}
.

From the definition of Um(x) in Eq (8), we have

L{ψn,m(x)} = 2
k
2

√
2

π
e−

2n−2

2k
sL
{ m∑

i=0

i∑
r=0

(−1)i+r2i(m+ i+ 1)!i!

r!(i− r)!(m− i)!(2i+ 1)!
(2kx− 1)

r
}

− 2
k
2

√
2

π
e−

2n

2k
sL
{ m∑

i=0

i∑
r=0

(−1)i+r2i(m+ i+ 1)!i!

r!(i− r)!(m− i)!(2i+ 1)!
(2kx+ 1)

r
}
.
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For simplicity, let T i,m,r = (−1)i+r2i(m+i+1)!i!
r!(i−r)!(m−i)!(2i+1)!

, and we get

L{ψn,m(x)} = 2
k
2

√
2

π
e−

2n−2

2k
sL
{ m∑

i=0

i∑
r=0

T i,m,r(2kx− 1)
r
}

− 2
k
2

√
2

π
e−

2n

2k
sL
{ m∑

i=0

i∑
r=0

T i,m,r(2kx+ 1)
r
}

= 2
k
2

√
2

π
e−

2n−2

2k
sL
{ m∑

i=0

i∑
r=0

r∑
j=0

T i,m,r
r!

j!(r − j)!
(−1)j2k(j−r)xr−j

}
− 2

k
2

√
2

π
e−

2n

2k
sL
{ m∑

i=0

i∑
r=0

r∑
j=0

T i,m,r
r!

j!(r − j)!
2k(r−j)xr−j}

= 2
k
2

√
2

π
e−

2n

2k
s

{
m∑
i=0

i∑
r=0

r∑
j=0

r!

j!
T i,m,r2k(r−j)(e

2s

2k (−1)j − 1)
1

sr−j+1

}
.

By using the Riemann-Liouville fractional integral operator of order α:

Iαf(x) =
1

Γ(α)
xα−1 ∗ f(x),

where xα−1 ∗ f(x) is convolution product of xα−1 and f(x), we get

L{Iαψn,m(x)} = L{x
α−1

Γ(α)
}L{ψn,m(x)}

= 2
k
2

√
2

π
e−

2n

2k
s

{
m∑
i=0

i∑
r=0

r∑
j=0

r!

j!
T i,m,r2k(r−j)(e

2s

2k (−1)j − 1)
1

sr−j+1+α

}
. (11)

Taking the inverse Laplace transform of Eq (11) yields

Iαψn,m(x) = 2
k
2

√
2

π

{
m∑
i=0

i∑
r=0

r∑
j=0

T i,m,r
r!

j!
2k(r−j)L−1

{
e−

2n−2

2k
s

sr−j+1+α
(−1)j (12)

− e−
2n

2k
s

sr−j+1+α

}

= 2
k
2

√
2

π

{
m∑
i=0

i∑
r=0

r∑
j=0

T i,m,r
r!

j!
2k(r−j)

(ν 2n−2

2k
(−1)j(x− 2n−2

2k
)
r−j+α

Γ(r − j + 1 + α)

−
ν 2n

2k
(x− 2n

2k
)
r−j+α

Γ(r − j + 1 + α)

)
.
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By using Eq (12), we have

Iαψn,m(x) =



0, x < 2n−2
2k

2
k
2

√
2
π

[
m∑
i=0

i∑
r=0

r∑
j=0

2ii!(i+m+1)!(−1)i+j+r2k(r−j)

(2i+1)!j!(m−i)!(i−r)!Γ(α−j+r+1)

×
(
x− 2n−2

2k

)α−j+r]
, 2n−2

2k
≤ x ≤ 2n

2k

2
k
2

√
2
π

[
m∑
i=0

i∑
r=0

r∑
j=0

2i(−1)i+ri!(i+m+1)!2k(r−j)

(2i+1)!j!(m−i)!(i−r)!Γ(α−j+r+1)

×
(

(−1)j
(
x− 2n−2

2k

)α−j+r − (x− 2n
2k

)α−j+r)]
, x > 2n

2k
.

(13)
The proof is completed.

For instance, for k = 2,M = 4, x = 0.6, α = 0.9, we obtain

I0.9Ψ8×1(0.6) =



0.838817891721642

0.045706956934399

0.290734994150959

0.021626272477045

0.208881853762857

−0.329813453309774

0.323368822612918

−0.217309447751042


,

where Ψ8×1 = (ψ1,0(x), ψ1,1(x), ψ1,2(x), ψ1,3(x), ψ2,0(x), ψ2,1(x), ψ2,2(x), ψ2,3(x))T .
We can obtain the fractional order integration matrix Pα

m′×m′ = Iαψn,m(x) by substi-
tuting the collocation points in Eq (13) as

Pα
2k−1M×2k−1M

=


Iαψ1,0(x(1)) Iαψ1,0(x(2)) . . . Iαψ1,0(x(2k−1M))
Iαψ1,1(x(1)) Iαψ1,1(x(2)) . . . Iαψ1,1(x(2k−1M))

...
...

. . .
...

Iαψ2k−1,M (x(1)) Iαψ2k−1,M (x(2)) . . . Iαψ2k−1,M (x(2k−1M))

 .
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For instance, we fix k = 2,M = 4 and α = 0.9, then we have:

P 0.9
8×8 =



0.1368 0.3678 0.5825 0.7885 0.8517 0.8165 0.7939 0.7771

−0.2377 −0.4452 −0.3985 −0.1245 0.0545 0.0337 0.0246 0.0194

0.2789 0.2423 0.0032 0.0615 0.2996 0.2783 0.2680 0.2612

−0.2570 −0.0232 −0.0530 −0.2259 0.0274 0.0148 0.0104 0.0081

0 0 0 0 0.1368 0.3678 0.5825 0.7885

0 0 0 0 −0.2377 −0.4452 −0.3985 −0.1245

0 0 0 0 0.2789 0.2423 0.0032 0.0615

0 0 0 0 −0.2570 −0.0232 −0.0530 −0.2259


.

3 Procedure of implementation

In this section, we describe our method to solve the singular and nonlinear fractional
Lane-Emden equations. We first convert nonlinear equations to linear equations by the
quasilinearization technique, then using the second-kind Chebyshev wavelets collocation
method to solve the equations obtained in the previous step. We describe the procedure of
implementation in more details, which enable the readers to understand the method more
effectively.

Consider the following form of Lane-Emden equation:

Dα
xu(x) +

2

x
Dβ
xu(x) + f(x, u(x)) = 0, x > 0, 1 < α ≤ 2, 0 < β ≤ 1, (14)

with initial conditions:
u(0) = A, u

′
(0) = B, (15)

for applying the quasilinearization technique [3], [30], let an initial approximation of the
function u(x), for this we use u0(x) as initial approximation, it may be u0(x) = A. The
function f can now be expanded around the function u0(x) by using of the Taylor series
expansion:

f(x, u(x)) = f(x, u0(x)) + (u(x)− u0(x))(fu0(x, u0(x))), (16)

in series expansion we ignore the second and other higher terms. Using Eq (16) in Eq (14):

Dα
xu(x) +

2

x
Dβ
xu(x) + f(x, u0(x)) + (u(x)− u0(x))(fu0(x, u0(x))) = 0, (17)

solving Eq (17) for u(x), we obtain it and call u1(x). By continuing this process, we can
get u2(x). Then, recurrence relation is:

Dα
xur+1(x) +

2

x
Dβ
xur+1(x) + f(x, ur(x)) + (ur+1(x)− ur(x))(fur(x, ur(x))) = 0, (18)
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where ur(x) is known and we can obtain ur+1(x). Eq (18) is a linear equation with the
following conditions:

ur+1(0) = A, u
′

r+1(0) = B. (19)

Applying the Chebyshev wavelet method in Eq (18), we approximate the higher order
derivative term by Chebyshev wavelet series as:

Dα
xur+1(x) ≈ Dα

xu
w
r+1(x) =

2k−1∑
n=1

M−1∑
m=0

cr+1
n,mψn,m(x). (20)

Lower order derivatives are obtained by integrating (20) and use of initial conditions (19),
we get:

ur+1(x) ≈ uwr+1(x) =
2k−1∑
n=1

M−1∑
m=0

cr+1
n,mP

α
x ψn,m(x) +Bx+ A, (21)

Dβ
xur+1(x) ≈ Dβ

xu
w
r+1(x) =

2k−1∑
n=1

M−1∑
m=0

cr+1
n,mP

α−β
x ψn,m(x) +B

x1−β

Γ(2− β)
. (22)

Using Eqs ((21),(22),(20)) in Eq (18), we obtain:

2k−1∑
n=1

M−1∑
m=0

cr+1
n,mψn,m(x) +

2

x

( 2k−1∑
n=1

M−1∑
m=0

cr+1
n,mP

α−β
x ψn,m(x) +B

x1−β

Γ(2− β)

)
(23)

+ f(x, ur(x)) +
(

(
2k−1∑
n=1

M−1∑
m=0

cr+1
n,mP

α
x ψn,m(x)

+Bx+ A)− ur(x)
)

(fur(x, ur(x))) ≈ 0.

By using collocation points xi = i−0.5
2k−1M

, replacing ≈ by =, and solving this linear system
for cr+1, which is a coefficients vector, and substituting cr+1 in Eq (21), we get solution
ur+1(x) at the collocation points. Suppose u0(x) = A as an initial approximation, we get
a linear fractional differential equation in u1(x) by substituting r = 0 in Eq (18), where is
solved by above procedure. Similarly for r = 1 we obtain u2(x) and so on.

4 Convergence of Chebyshev Wavelet Quasilinearization Method

We derive an error estimate of the Chebyshev wavelet quasilinearization approximations
to an arbitrary unknown function.

Theorem 4.1. Let r, k,M →∞, then the series solution

u(x) ≈
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x)

converges to u(x).
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Proof. Let L2[0, 1) be the Hilbert space and ψn,m forms a basis of L2[0, 1). Let us consider

ur+1(x) ≈
2k−1∑
n=1

M−1∑
m=0

cr+1
n,mψn,m(x), (24)

where cr+1
n,m = 〈ur+1(x), ψn,m(x)〉. Let Sr+1

k,M be a sequence of partial sums of cr+1
n,mψn,m(x),

we prove that Sr+1
k,M is a Cauchy sequence in L2[0, 1) and then we show that Sr+1

k,M converges
to ur+1, when k,M →∞.

We show that Sr+1
k,M is a Cauchy sequence. Let Sr+1

k,M be arbitrary sums of cr+1
n,mψn,m(x)

with k > k′,M > M ′.

‖Sr+1
k,M − S

r+1
k′,M ′‖

2 =
∥∥∥2k−1∑
n=1

M−1∑
m=0

cr+1
n,mψn,m(x)−

2k
′−1∑

n=1

M ′−1∑
m=0

cr+1
n,mψn,m(x)

∥∥∥2

(25)

=
∥∥∥ 2k−1∑
n=2k′−1+1

M−1∑
m=M ′

cr+1
n,mψn,m(x)

∥∥∥2

=
〈 2k−1∑
n=2k′−1+1

M−1∑
m=M ′

cr+1
n,mψn,m(x),

2k−1∑
i=2k′−1+1

M−1∑
j=M ′

cr+1
i,j ψi,j(x)

〉

=
2k−1∑

n=2k′−1+1

M−1∑
m=M ′

2k−1∑
i=2k′−1+1

M−1∑
j=M ′

cr+1
n,mc

′r+1
i,j

〈
ψn,m(x), ψi,j(x)

〉
=

2k−1∑
n=2k′−1+1

M−1∑
m=M ′

|cr+1
n,m|2.

From the Bessel’s inequality, we have
∑∞

n=1

∑∞
m=0 |cr+1

n,m|2 that is convergent and

‖Sr+1
k,M − S

r+1
k′,M ′‖

2 → 0,

when k, k′,M,M ′ →∞. This implies that Sr+1
k,M is a Cauchy sequence and it converges to,

say, yr+1(x) ∈ L2[0, 1). We need to show that ur+1(x) = yr+1(x),

〈yr+1(x)− ur+1(x), ψn,m(x)〉 = 〈yr+1(x), ψn,m(x)〉 − 〈ur+1(x), ψn,m(x)〉 (26)

= lim
k,M→∞

〈Sr+1
k,M , ψn,m(x)〉 − cr+1

n,m

= cr+1
n,m − cr+1

n,m

= 0.

Hence
∑2k−1

n=1

∑M−1
m=0 c

r+1
n,mψn,m(x) converges to ur+1(x) as k,M → ∞. Now we show that

ur+1(x) → u(x), when r → ∞. According to the convergence of quasilinearization tech-
nique [3], we have

maxx |ur+1 − ur| ≤
s
8

1− p
4

(maxx(|ur − ur−1|))2, (27)
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where s, p are positive finite constants and are given in [3]. From Eq (27), we conclude
that ur+1(x)→ u(x), when r →∞, if there is convergence at all.

5 Numerical results and examples

In this section, we implement the CWCQM (Chebyshev wavelets collocation quasi-
linearization method) as discussed in section (3) to some of the singular and nonlinear
fractional Lane-Emden differential equations. We define the maximum absolute error of
L∞:

L∞ = max |uExact(x)− uCWCQM(x)|, x ∈ [0, 1]. (28)

Example 5.1. Consider the fractional standard Lane-Emden equation that is used to model
the thermal behavior of a spherical cloud of gas acting under the mutual attraction of its
molecules and subject to the classical laws of thermodynamics [54], [61], [41], [45]:

Dα
xu(x) +

2

x
Dβ
xu(x) + u(x)n = 0, (29)

with initial conditions:
u(0) = 1, u

′
(0) = 0.

Exact solutions for n = 0, 1, 5, when α = 2, β = 1 are given in [36].
Case(1):
If n = 1, we have:

Dα
xu(x) +

2

x
Dβ
xu(x) + u(x) = 0, (30)

with initial conditions, u(0) = 1, u
′
(0) = 0. Exact solution for α = 2, β = 1 is u(x) = sin(x)

x
.

We implemented the presented method on Eq (30). We plot in Figure 1a Chebyshev
approximate solutions for different values of α, β, as can be seen, when the values α, β tend
to 2, 1 respectively, the approximate solutions approach to the exact solution. Figure 1b
shows that the approximate solution obtained using the method described above is a good
approximation of the exact solution of the Eq (30). Table 1 shows the comparison of the
error analysis for various methods, such as Adomian Decomposition Method (ADM), Haar
Wavelet Collocation Method (HWCM), Haar Wavelet Adaptive Grid Method (HWAGM),
Haar Wavelet Collocation Adomian Method (HWCAM). According to the Table 1, we
conclude that results produced by the present method are better than the other methods
results.

Case(2):
If n = 5, we have Eq (29) as:

Dα
xu(x) +

2

x
Dβ
xu(x) + u(x)5 = 0, (31)

with initial conditions, u(0) = 1, u
′
(0) = 0. Exact solution for the case where α = 2 and

β = 1 is u(x) = 1√
1+x2

3

.
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Figure 1: (1a) uCWCQM for different values of α, β with k = 2,M = 8, (1b) Chebyshev
approximate solution, exact solution and absolute error for α = 2, β = 1, k = 2,M = 8 in
Example (5.1) n = 1.
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N EADM [54] EHWCM [45] EHWAGM [23] EHWCAM [41] ECWCQM

L∞ L∞ L∞ L∞ L∞

8 6.4356e− 03 1.8562e− 05 5.0856e− 06 7.2156e− 05 6.7870e− 08

16 7.3373e− 03 5.0012e− 06 1.0012e− 06 4.3274e− 05 1.1146e− 11

32 7.8221e− 03 1.2932e− 06 3.0938e− 07 1.0015e− 05 9.6485e− 12

64 8.0733e− 03 3.2854e− 07 9.1857e− 08 9.7345e− 06 7.2153e− 12

Table 1: Comparison of the error analysis in Example 5.1, n = 1, α = 2, β = 1

The implementation of the Chebyshev wavelets collocation quasilinearization method
(CWCQM) to Eq (31) is as follows:

Let us assume that:
f(x, u(x)) = u(x)5, (32)

we apply quasilinearization technique in Eq (32) as follows:

f(x, ur+1(x)) = ur(x)5 + (ur+1(x)− ur(x))f
′

ur(x)(x, ur(x)),

so:
f(x, ur+1(x)) = ur(x)5 + (ur+1(x)− ur(x))(5ur(x)4), (33)

by putting Eq (33) in Eq (31), we obtain:

Dα
xur+1(x) +

2

x
Dβ
xur+1(x) + ur(x)5 + (ur+1(x)− ur(x))(5ur(x)4) = 0, (34)

for solving Eq (34) by the Chebyshev wavelet collocation method, we assume that:

Dα
xur+1(x) ≈

2k−1∑
n=1

M−1∑
m=0

cr+1
n,mψn,m(x). (35)

Lower order derivatives are obtained by integrating Eq (35) and use of initial conditions,
we get:

Dβ
xur+1(x) ≈

2k−1∑
n=1

M−1∑
m=0

cr+1
n,mP

α−β
x ψn,m(x) +B

x1−β

Γ(2− β)
, (36)

and

ur+1(x) ≈
2k−1∑
n=1

M−1∑
m=0

cr+1
n,mP

α
x ψn,m(x) +Bx+ A, (37)
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using Eqs ((37),(36),(35)) in Eq (34), replacing ≈ by =, and using collocation points
xj = j−0.5

2k−1M
, j = 1, 2, . . . , 2k−1M to obtain:

2k−1∑
n=1

M−1∑
m=0

cr+1
n,mψn,m(xj) +

2

xj

( 2k−1∑
n=1

M−1∑
m=0

cr+1
n,mP

α−β
xj

ψn,m(xj)

+B
x1−β
j

Γ(2− β)

)
+ ur(xj)

5 +
(

(
2k−1∑
n=1

M−1∑
m=0

cr+1
n,mP

α
xj
ψn,m(xj)

+Bxj + A)− ur(xj)
)

(5ur(xj)
4) = 0. (38)

For r = 0, and using initial approximation u0(x) = A, we get c1-coefficients and putting
them in Eq (37), we get the u1(x) approximate solution, similarly for r = 1, solving linear
system of equations (38), we obtain c2-coefficients and we get the u2(x) and so on.

We implemented the presented method on Eq (31) for k = 2,M = 8. We plotted in
Figure 2a the Chebyshev approximate solutions for different values of α, β, as can be seen,
when the values α, β tend to 2, 1 respectively, the approximate solutions approach the
exact solution. Figure 2b shows that the absolute errors of 1st-3rd approximate solutions
obtained using the method described above is a good approximation of the exact solution
of the Eq (31), and indicate by increasing iterations, the absolute error decreasing. Ta-
ble 2 shows the comparison of the error analysis for various methods, such as Adomian
Decomposition Method (ADM) [54], Haar Wavelet Collocation Method (HWCM) [45],
Haar Wavelet Adaptive Grid Method (HWAGM) [46], Haar Wavelet Collocation Adomian
Method (HWCAM) [41]. According to the Table 2, we conclude that results produced by
the present method are better than the other methods. In Tables 2, 4 and 6 N represents
the dimension of the approximate solutions. For comparison our proposed method approx-
imate solution with the Runge-Kutta of order 4, we set the Table 3, as can be seen our
results much better than the Runge-Kutta’s approximate solution. Also, we implemented
the presented method on Eq (31) for k = 1,M = 8 and by solving the system (38) in the
collocation points as x1 = 1

16
, x2 = 3

16
, x3 = 5

16
, . . . , x8 = 15

16
, we get the C3

n,m coefficients as

C3 =



−0.194349084069466

0.070070088027989

0.007344030232925

−0.004296362010761

0.000146805258182

0.000129579901339

−0.000017329511545

−0.000002478064867


,

replacing these values in Eq (37) and using the initial conditions, we get the following
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Figure 2: (2a) uCWCQM for different values of α, β with k = 2,M = 8, (2b) Absolute errors
of different iterations for α = 2, β = 1, k = 2,M = 8 (b) in Eq (31) n = 5.
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Figure 3: u3, exact solution and the absolute error of the Example (5.1), n = 5 for
k = 1,M = 8

approximate solution in the 3rd iteration

u3(x) = −0.00063629x9 + 0.00143305x8 + 0.00396832x7 (39)

− 0.0149915x6 + 0.001646x5 + 0.0412078x4 + 0.0000690821x3

− 0.166671x2 + 1.

In the Figure 3, we plotted the Eq (39), exact solution and the absolute error in range
0 ≤ x ≤ 1. Figure 3 shows that, the proposed method has a good performance dealing
with the singularity in the point x = 0.

N EADM [54] EHWCM [45] EHWAGM [23] EHWCAM [41] ECWCQM

L∞ L∞ L∞ L∞ L∞

8 3.0591e− 02 9.2374e− 05 2.2745e− 05 7.7048e− 05 4.0104e− 07

16 3.4652e− 02 2.4231e− 05 6.4165e− 06 1.0573e− 05 7.7340e− 11

32 3.6814e− 02 6.2101e− 06 1.0121e− 06 4.3726e− 06 1.8416e− 11

64 3.7929e− 02 1.5723e− 06 3.5372e− 07 9.6483e− 07 8.7315e− 12

Table 2: Comparison of the error analysis in Example (5.1), n = 5, α = 2, β = 1

Example 5.2. Consider the following singular nonlinear fractional Lane-Emden equation:

Dα
xu(x) +

2

x
Dβ
xu(x) + 8eu(x) + 4e

u(x)
2 = 0, 0 < x ≤ 1, (40)
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t uCWCQM uExact ECWCQM uRunge−Kutta ERunge−Kutta

0.01562 9.9996e− 01 9.9996e− 01 8.0000e− 15 9.9996e− 01 1.1263e− 11

0.04687 9.9963e− 01 9.9963e− 01 3.0000e− 15 9.9963e− 01 4.0181e− 10

0.07812 9.9898e− 01 9.9898e− 01 0 9.9898e− 01 2.4146e− 10

0.10938 9.9801e− 01 9.9801e− 01 1.0000e− 15 9.9801e− 01 2.0345e− 10

0.14063 9.9672e− 01 9.9672e− 01 1.0000e− 15 9.9672e− 01 2.0641e− 10

0.17188 9.9511e− 01 9.9511e− 01 2.0000e− 15 9.9511e− 01 3.6587e− 10

0.20313 9.9319e− 01 9.9319e− 01 1.0000e− 15 9.9319e− 01 6.6344e− 10

0.23438 9.9097e− 01 9.9097e− 01 7.0000e− 15 9.9097e− 01 9.6500e− 10

0.26563 9.8844e− 01 9.8844e− 01 1.4000e− 14 9.8844e− 01 2.0501e− 09

0.29688 9.8563e− 01 9.8563e− 01 4.0000e− 14 9.8563e− 01 6.4304e− 13

0.32813 9.8252e− 01 9.8252e− 01 6.4000e− 14 9.8252e− 01 1.0550e− 10

0.35938 9.7915e− 01 9.7915e− 01 8.2000e− 14 9.7915e− 01 5.3249e− 09

0.39063 9.7550e− 01 9.7550e− 01 9.8000e− 14 9.7550e− 01 3.4451e− 09

0.42188 9.7159e− 01 9.7159e− 01 1.1100e− 13 9.7159e− 01 3.6357e− 09

0.45313 9.6744e− 01 9.6744e− 01 1.2100e− 13 9.6744e− 01 8.6139e− 09

0.48438 9.6305e− 01 9.6305e− 01 1.3500e− 13 9.6305e− 01 7.2980e− 09

0.51563 9.5843e− 01 9.5843e− 01 9.6000e− 14 9.5843e− 01 6.6067e− 09

0.54688 9.5360e− 01 9.5360e− 01 1.8000e− 14 9.5360e− 01 1.2260e− 08

0.57813 9.4856e− 01 9.4856e− 01 4.9000e− 14 9.4856e− 01 1.2013e− 08

0.60938 9.4332e− 01 9.4332e− 01 1.0800e− 13 9.4332e− 01 9.9493e− 09

0.64063 9.3790e− 01 9.3790e− 01 1.6200e− 13 9.3790e− 01 1.4632e− 08

0.67188 9.3231e− 01 9.3231e− 01 2.1000e− 13 9.3231e− 01 1.7006e− 08

0.70313 9.2656e− 01 9.2656e− 01 2.5300e− 13 9.2656e− 01 1.5520e− 08

0.73438 9.2066e− 01 9.2066e− 01 2.8800e− 13 9.2066e− 01 1.5663e− 08

0.76563 9.1463e− 01 9.1463e− 01 3.4200e− 13 9.1463e− 01 2.1368e− 08

0.79688 9.0846e− 01 9.0846e− 01 4.0700e− 13 9.0846e− 01 2.1868e− 08

0.82813 9.0218e− 01 9.0218e− 01 4.6500e− 13 9.0218e− 01 2.0381e− 08

0.85938 8.9580e− 01 8.9580e− 01 5.1700e− 13 8.9580e− 01 2.1832e− 08

0.89063 8.8932e− 01 8.8932e− 01 5.6400e− 13 8.8932e− 01 2.4842e− 08

0.92188 8.8275e− 01 8.8275e− 01 6.0700e− 13 8.8275e− 01 2.5148e− 08

0.95313 8.7611e− 01 8.7611e− 01 6.4400e− 13 8.7611e− 01 2.4392e− 08

0.98438 8.6940e− 01 8.6940e− 01 6.7600e− 13 8.6940e− 01 2.5670e− 08

Table 3: Error analysis and comparison CWCQM and the Runge-Kutta of order 4 for
Example (5.1), Eq (31) with k = 3,M = 8
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with initial conditions: u(0) = u
′
(0) = 0. Exact solution for the case where α = 2 and

β = 1 is u(x) = −2ln(1 + x2) [45].

t uADM [54] uV IM [61] uHWCM [45] uexact[45] uCWCQM

( 1
32

) −0.001952 −0.001952 −0.001949 −0.001952 −0.001952

( 3
32

) −0.017501 −0.017501 −0.017504 −0.017501 −0.017501

( 5
32

) −0.048241 −0.048241 −0.048255 −0.048241 −0.048241

( 7
32

) −0.093483 −0.093483 −0.093513 −0.093483 −0.093483

( 9
32

) −0.152257 −0.152256 −0.152309 −0.152257 −0.152257

(11
32

) −0.223376 −0.223378 −0.223454 −0.223376 −0.223376

(13
32

) −0.305508 −0.305466 −0.305619 −0.305509 −0.305509

(15
32

) −0.397247 −0.397080 −0.397399 −0.397253 −0.397253

(17
32

) −0.497163 −0.496615 −0.497381 −0.497196 −0.497196

(19
32

) −0.603819 −0.602281 −0.604194 −0.603967 −0.603967

(21
32

) −0.715706 −0.711907 −0.716548 −0.716277 −0.716277

(23
32

) −0.831008 −0.822627 −0.833257 −0.832944 −0.832944

(25
32

) −0.947015 −0.930367 −0.953261 −0.952905 −0.952905

(27
32

) −1.058866 −1.029114 −1.075621 −1.075224 −1.075224

(29
32

) −1.157061 −1.109891 −1.199524 −1.199089 −1.199089

(31
32

) −1.222860 −1.159399 −1.324275 −1.323804 −1.323804

Table 4: Comparison of ADM, VIM, HWCM and CWCQM solutions with the Exact
solution for N = 16 in Example 5.2, for α = 2, β = 1

We plotted absolute errors of different iterations (1st-4th) in Figure 4a, as can be
seen, by increasing iterations the absolute errors decrease, also Figure 4b shows that by
increasing M approximate solutions are in a good coincidence with the exact solution,
and the absolute errors are getting a decrease. The obtained numerical solution of the
Example 5.2 is presented in comparison with the ADM, VIM, HWCM solutions and the
exact solution in Table 4 for (N = 16), k = 2,M = 8. The error analysis for different
values of α, β is given in Table 5, which shows that α, β-values tend to 2, 1 respectively,
L∞ are getting decreases.

Example 5.3. Consider the fractional Lane-Emden equation:

Dα
xu(x) +

2

x
Dβ
xu(x) + eu(x)(6− 4x2eu(x)) = 0, 0 < x ≤ 1, (41)

with initial conditions: u(0) = −ln(4), u
′
(0) = 0. Exact solution for α = 2, β = 1 is

u(x) = ln( 1
4+x2

) [48], [45].
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Figure 4: (4a) Absolute errors of different iterations for α = 2, β = 1, k = 2,M = 8, (4b)
Absolute error for different values of M with k = 2, α = 2, β = 1 in Example 5.2

α = 1.7, β = 0.7 α = 1.85, β = 0.85 α = 1.95, β = 0.95 α = 2, β = 1
L∞ L∞ L∞ L∞

1.9768e-01 1.0128e-01 3.4345e-02 2.6207e-09

Table 5: Comparison of the error analysis in Example 5.2, for different values of α, β
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10-12 Absolute error of Chebyshev solution in the 3rd iteration
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Figure 5: (5a) Absolute errors of Haar and Chebyshev approximate solutions (3rd iter-
ation), J = 3, for Haar, k = 2,M = 8 for Chebyshev approximate solutions, Haar and
Chebyshev approximate solutions (3rd iteration) and Exact solution, (5b) J = 3, for Haar,
k = 2,M = 8 for Chebyshev solutions in Example 5.3
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Figure 6: Approximate solutions of the CWCQM, HWCM and HWCAM methods for
α = 1.85, β = 0.85

N 8 16 32 64 128 256 512

HWCM[45] L∞ 8.94e-05 2.02e-05 5.22e-06 1.32e-06 3.34e-07 8.38e-08 2.10e-08

HWCM[48] L∞ 1.95e-03 4.89e-04 1.22e-04 3.06e-05 7.65e-06 1.91e-06 4.78e-07

CWCQM L∞ 5.32e-07 3.70e-12 1.25e-14 9.52e-16 4.23e-16 1.02e-16 8.62e-17

Table 6: Comparison of error analysis in Example 5.3 in the 3rd iteration, for α = 2, β = 1

We implemented the present method for Eq (5.3) by using u0(x) = −ln(4) as initial
approximation. Figure 5a shows the comparison of the absolute error for the Haar wavelet
collocation method (HWCM) [45] and Chebyshev Wavelet Collocation Quasilinearization
Method (CWCQM), as can be seen it had better approximate solutions than HWCM.
We make a comparison between the results obtained by the CWCQM method and the
Haar wavelet collocation method [45], [48] in Table 6. It can be seen from Table 6, the
approximate solution obtained by the present method is in good coincidence accuracy
with the exact solution in comparison of two other methods. In Figure 6, we plotted the
approximate solutions of the CWCQM, HWCM and HWCAM methods for α = 1.85 and
β = 0.85, as can be seen the approximate solution obtained by the CWCQM has a better
approximation than other methods.

Example 5.4. Consider the Lane-Emden equation of the fractional derivatives for a self-
gravitating isothermal gas sphere [41]:

Dα
xu(x) +

2

x
Dβ
xu(x)− eu(x) = 0, 0 < x ≤ 1, (42)
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Figure 7: Approximate solutions of the isothermal gas spheres equation at different values
of α, β in Example 5.4

with initial conditions: u(0) = 0, u
′
(0) = 0, where u(x) is the Newtonian gravitational

potential function and x is the dimensionless radius [41]. We plotted the approximate so-
lutions of different values of α, β obtained from the present method in Figure 7, as it can be
seen, tending α, β to 2, 1 respectively, approximate solutions approach the exact solution.
Eq (42) is solved by the fractional approximation technique [31], a power series solution
method [34], and Euler-transformed series [13]. In Table 7 exact solution represents the
solution obtained from Runge-Kutta method of order 4 (this equation is devoid of an exact
solution. To compare the proposed method with the others, we are going to consider the
solution obtained by Runge-Kutta method of order 4 as the exact solution. It is note-
worthy that it does not mean the Runge-Kutta method solution surpasses our method.
We have just compared them). uHWCAM is the obtained solution by the Haar Wavelet
Collocation Adomian Method [41]. In [41], U. Saeed has solved Eq (42) by HWCAM in
J = 8, N = 512 and the 23rd iteration. It can be seen from the Table 7, when α = 2, β = 1,
our approximate solutions are better than those obtained in [13], [31], [34], [41].

6 Conclusion

In this paper, we use the second-kind Chebyshev wavelet to obtain the approximate
solutions of the Lane-Emden singular and nonlinear fractional differential equations. The
matrices of the integral operator of the fractional order of the Chebyshev wavelets were
used to convert the Lane-Emden equation to a linear system of algebraic equations. Solv-
ing the Lane-Emden singular and nonlinear fractional differential equations are difficult
due to the singularity at the point x = 0. The proposed method is very convenient for
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x uRung−Kutta[41] uHWCAM [41] uCWCQM Mirza[31] Nouh[34] Hunter[13]

0.1 0.001666 0.0016658 0.001666 0.0016 0.0166 0.0016

0.2 0.006653 0.0066534 0.006653 0.0066 0.0333 0.0065

0.3 0.014933 0.0149329 0.014933 0.0149 0.0500 0.0145

0.4 0.026455 0.0264555 0.026455 0.0266 0.0666 0.0253

0.5 0.041154 0.0411540 0.041154 0.0416 0.0833 0.0385

0.6 0.058944 0.0589441 0.058944 0.0598 0.1000 0.0536

0.7 0.079726 0.0797260 0.079726 0.0813 0.1166 0.0700

0.8 0.103386 0.1033861 0.103386 0.1060 0.1333 0.0870

0.9 0.129799 0.1297985 0.129799 0.1338 0.1500 0.1038

1.0 0.158828 0.1588277 0.158828 0.1646 0.1666 0.1198

Table 7: Comparison of the approximate solutions for the isothermal gas sphere equation
when α = 2, β = 1 in Example 5.4

solving the Lane-Emden fractional equations since the initial conditions are all considered
during the process of constructing the approximate solutions. As was shown in Examples
(5.1, 5.2, 5.3, 5.4), the method of the Chebyshev wavelet effectively and efficiently managed
to solve the Lane-Emden equations of the fractional order. The results of this analysis are
as follows:

1) The present method gives better accuracy in comparison with the other numerical
methods [45], [48], [23]. Choose of small values of k, M gives better approximate
solutions.

2) This method is applicable to all type of singular initial value problems.

3) This scheme is easy to implement in computer programs.

4) Unlike other methods (such as method [46]), this method does not require a long
calculation to obtain a general order integration matrix.
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