Mohamed Laghzal ; Abdelouahed El Khalil ; Abdelfattah Touzani
-
A Weighted Eigenvalue Problems Driven by both p(·)-Harmonic and p(·)-Biharmonic Operators
cm:9519 -
Communications in Mathematics,
December 23, 2021,
Volume 29 (2021), Issue 3
-
https://doi.org/10.2478/cm-2020-0011A Weighted Eigenvalue Problems Driven by both p(·)-Harmonic and p(·)-Biharmonic OperatorsArticleAuthors: Mohamed Laghzal
1,2; Abdelouahed El Khalil ; Abdelfattah Touzani
0000-0002-7043-6059##NULL##NULL
Mohamed Laghzal;Abdelouahed El Khalil;Abdelfattah Touzani
The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p(·)-Harmonic and p(·)-biharmonic operatorsΔp(x)2u-Δp(x)u=λw(x)|u|q(x)-2u in Ω, u∈W2,p(⋅)(Ω)∩W0-1,p(⋅)(Ω),is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces Lp(·)(Ω) and Wm,p(·)(Ω).
Volume: Volume 29 (2021), Issue 3
Published on: December 23, 2021
Imported on: May 11, 2022
Keywords: [MATH]Mathematics [math]