cm:9538 -
Communications in Mathematics,
July 15, 2021,
Volume 29 (2021), Issue 2 (Special Issue: 3rd International Workshop on Nonassociative Algebras in Málaga)
-
https://doi.org/10.2478/cm-2021-0019
Unified computational approach to nilpotent algebra classification problemsArticle
Authors: Shirali Kadyrov ; Farukh Mashurov
NULL##0000-0001-6049-6800
Shirali Kadyrov;Farukh Mashurov
In this article, we provide an algorithm with Wolfram Mathematica code that gives a unified computational power in classification of finite dimensional nilpotent algebras using Skjelbred-Sund method. To illustrate the code, we obtain new finite dimensional Moufang algebras.
Ivan Kaygorodov;Farukh Mashurov, 2024, Mutations of $${\mathfrak {perm}}$$ algebras, Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas, 118, 4, 10.1007/s13398-024-01663-3.
Kobiljon Abdurasulov;Ivan Kaygorodov;Abror Khudoyberdiyev, 2023, The algebraic and geometric classification of nilpotent binary and mono Leibniz algebras, Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas, 118, 1, 10.1007/s13398-023-01533-4, https://doi.org/10.1007/s13398-023-01533-4.
Kobiljon Abdurasulov;Ivan Kaygorodov;Abror Khudoyberdiyev, 2023, The algebraic classification of nilpotent Novikov algebras, Filomat, 37, 20, pp. 6617-6664, 10.2298/fil2320617a, https://doi.org/10.2298/fil2320617a.
Nurlan Ismailov;Farukh Mashurov;Nurken Smadyarov, 2022, Defining identities for mono and binary Zinbiel algebras, Journal of Algebra and Its Applications, 22, 08, 10.1142/s0219498823501657.