Communications in Mathematics |
In variational calculus, the minimality of a given functional under arbitrary deformations with fixed end-points is established through an analysis of the so called second variation. In this paper, the argument is examined in the context of constrained variational calculus, assuming piecewise differentiable extremals, commonly referred to as extremaloids. The approach relies on the existence of a fully covariant representation of the second variation of the action functional, based on a family of local gauge transformations of the original Lagrangian and on a set of scalar attributes of the extremaloid, called the corners' strengths [16]. In dis- cussing the positivity of the second variation, a relevant role is played by the Jacobi fields, defined as infinitesimal generators of 1-parameter groups of diffeomorphisms preserving the extremaloids. Along a piecewise differentiable extremal, these fields are generally discontinuous across the corners. A thorough analysis of this point is presented. An alternative characterization of the Jacobi fields as solutions of a suitable accessory variational problem is established.
We define a canonical line bundle over the slit tangent bundle of a manifold, and define a Lagrangian section to be a homogeneous section of this line bundle. When a regularity condition is satisfied the Lagrangian section gives rise to local Finsler functions. For each such section we demonstrate how to construct a canonically parametrized family of geodesics, such that the geodesics of the local Finsler functions are reparametrizations.
We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local Noether strong currents are variationally equivalent to global canonical Noether currents. Variations, taken to be generalized symmetries and also belonging to the kernel of the second variational derivative of the local problem, generate canonical Noether currents - associated with variations of local Lagrangians - which in particular turn out to be conserved along any section. We also characterize the variation of the canonical Noether currents associated with a local variational problem.
The standard techniques of variational calculus are geometrically stated in the ambient of fiber bundles endowed with a (pre)multi-symplectic structure. Then, for the corresponding variational equations, conserved quantities (or, what is equivalent, conservation laws), symmetries, Cartan (Noether) symmetries, gauge symmetries and different versions of Noether's theorem are studied in this ambient. In this way, this constitutes a general geometric framework for all these topics that includes, as special cases, first and higher order field theories and (non-autonomous) mechanics.
If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application, we study the particular free boundary values variational problem of the free-sliding Bernoulli beam.
As widely accepted, justified by the historical developments of physics, the background for standard formulation of postulates of physical theories leading to equations of motion, or even the form of equations of motion themselves, come from empirical experience. Equations of motion are then a starting point for obtaining specific conservation laws, as, for example, the well-known conservation laws of momenta and mechanical energy in mechanics. On the other hand, there are numerous examples of physical laws or equations of motion which can be obtained from a certain variational principle as Euler-Lagrange equations and their solutions, meaning that the \true trajectories" of the physical systems represent stationary points of the corresponding functionals. It turns out that equations of motion in most of the fundamental theories of physics (as e.g. classical mechanics, mechanics of continuous media or fluids, electrodynamics, quantum mechanics, string theory, etc.), are Euler-Lagrange equations of an appropriately formulated variational principle. There are several well established geometrical theories providing a general description of variational problems of different kinds. One of the most universal and comprehensive is the calculus of variations on fibred manifolds and their jet prolongations. Among others, it includes a complete general solution of the so-called strong inverse variational problem allowing one not only to decide whether a concrete […]