Kisan Bhoi ; Prasanta Kumar Ray
-
On the Diophantine equation
$B_{n_{1}}+B_{n_{2}}=2^{a_{1}}+2^{a_{2}}+2^{a_{3}}$
cm:10476 -
Communications in Mathematics,
December 22, 2022,
Volume 31 (2023), Issue 1
-
https://doi.org/10.46298/cm.10476On the Diophantine equation
$B_{n_{1}}+B_{n_{2}}=2^{a_{1}}+2^{a_{2}}+2^{a_{3}}$Article
Authors: Kisan Bhoi ; Prasanta Kumar Ray
NULL##NULL
Kisan Bhoi;Prasanta Kumar Ray
In this study we find all solutions of the Diophantine equation $B_{n_{1}}+B_{n_{2}}=2^{a_{1}}+2^{a_{2}}+2^{a_{3}}$ in positive integer variables $(n_{1},n_{2},a_{1},a_{2},a_{3}),$ where $B_{n}$ denotes the $n$-th balancing number.
Comment: 18 pages
Volume: Volume 31 (2023), Issue 1
Published on: December 22, 2022
Accepted on: December 14, 2022
Submitted on: December 14, 2022
Keywords: Mathematics - Number Theory, 11B39, 11J86, 11D61