Communications in Mathematics |
We show that a measurable function $g:\mathbb{S}^{d-1}\to\mathbb{R}$, with $d\geq 3$, satisfies the functional relation \begin{equation*} g(\omega)+g(\omega_*)=g(\omega')+g(\omega_*'), \end{equation*} for all admissible $\omega,\omega_*,\omega',\omega_*'\in\mathbb{S}^{d-1}$ in the sense that \begin{equation*} \omega+\omega_*=\omega'+\omega_*', \end{equation*} if and only if it can be written as \begin{equation*} g(\omega)=A+B\cdot\omega, \end{equation*} for some constants $A\in \mathbb{R}$ and $B\in\mathbb{R}^d$. Such functions form a family of quantized collision invariants which play a fundamental role in the study of hydrodynamic regimes of the Boltzmann--Fermi--Dirac equation near Fermionic condensates, i.e., at low temperatures. In particular, they characterize the elastic collisional dynamics of Fermions near a statistical equilibrium where quantum effects are predominant.