Shilpa Gupta ; Gaurav Dwivedi
                        -
                    An existence result for $p$-Laplace equation with gradient nonlinearity
  in $\mathbb{R}^N$
cm:9316 -
                Communications in Mathematics,
                    May 23, 2022,
                    Volume 30 (2022), Issue 1
                    -
                    
                        https://doi.org/10.46298/cm.9316An existence result for $p$-Laplace equation with gradient nonlinearity
  in $\mathbb{R}^N$Article
Authors:  Shilpa Gupta ;  Gaurav Dwivedi 
NULL##NULL
Shilpa Gupta;Gaurav Dwivedi
  We prove the existence of a weak solution to the problem \begin{equation*} \begin{split} -\Delta_{p}u+V(x)|u|^{p-2}u & =f(u,|\nabla u|^{p-2}\nabla u), \ \ \ \\ u(x) & >0\ \ \forall x\in\mathbb{R}^{N}, \end{split} \end{equation*} where $\Delta_{p}u=\hbox{div}(|\nabla u|^{p-2}\nabla u)$ is the $p$-Laplace operator, $1
Comment: 10 pages, 0 figures
Volume: Volume 30 (2022), Issue 1
Published on: May 23, 2022
Imported on: July 17, 2020
Keywords: Mathematics - Analysis of PDEs, 35J20, 35J62, 35J92