Michel Balazard ; Leila Benferhat ; Mihoub Bouderbala - Sur la variation de certaines suites de parties fractionnaires

cm:9553 - Communications in Mathematics, December 23, 2021, Volume 29 (2021), Issue 3 - https://doi.org/10.2478/cm-2020-0021
Sur la variation de certaines suites de parties fractionnaires

Authors: Michel Balazard 1; Leila Benferhat ORCID-iD2; Mihoub Bouderbala 2

  • 1 Institut de Mathématiques de Marseille
  • 2 Université des Sciences et de la Technologie Houari Boumediene = University of Sciences and Technology Houari Boumediene [Alger]

Let $b > a > 0$. We prove the following asymptotic formula :\begin{equation*}\sum_{n\ge 0} \big\lvert\{x/(n+a)\}-\{x/(n+b)\}\big\rvert=\frac{2}{\pi}\zeta(3/2)\sqrt{cx}+O(c^{2/9}x^{4/9}),\\\end{equation*}with $c=b-a$, uniformly for $x \ge 40 c^{-5}(1+b)^{27/2}$.


Volume: Volume 29 (2021), Issue 3
Published on: December 23, 2021
Imported on: May 11, 2022
Keywords: Elementary methods,Fractional part,van der Corput estimates,MSC classification : 11N37,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]

Linked publications - datasets - softwares

Source : ScholeXplorer IsRelatedTo ARXIV 1606.03378
  • 1606.03378
Sur la variation totale de la suite des parties fractionnaires des quotients d'un nombre réel positif par les nombres entiers naturels consécutifs

Consultation statistics

This page has been seen 95 times.
This article's PDF has been downloaded 74 times.